Pore Structure of Coals by Mercury Intrusion, N2 Adsorption and NMR: A Comparative Study
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Coal Basic Information and Experiments
2.2. Basic Methodology for NMR
3. Results
3.1. Determination of Pore Structure by Mercury Intrusion
3.2. Low Temperature Nitrogen Absorption/Desorption Experiment
3.3. The Porosity and Pore Size Distribution by Nuclear Magnetic Resonance (NMR)
3.3.1. Determination of Optimum Centrifugal Force
3.3.2. Nuclear Magnetic Resonance (NMR) Porosity Characteristics of Coal Reservoirs
3.3.3. Pore Size Distribution by Nuclear Magnetic Resonance (NMR)
4. Discussion
4.1. The Total Pore Volume from Different Techniques
4.2. The Pore Size Distribution from Different Techniques
4.3. Error Analysis
4.4. The Impacts of Pore Structure on Fluid Transport
5. Conclusions
- (1)
- The porosity results indicate that the total pore volume of coal samples in different coal rank is significantly different, and the overall performance is that the total porosity decreases first and then increases with the increase of coal rank.
- (2)
- The N2GA experiment can effectively determine the types of pores and the development degree of specific surface area. The results show that the specific surface area of coals increases first and then decreases with the increase of coal rank. BJH calculation model can be used to effectively identify the pores within the diameter of 10-100 nm. For the calculation of pore diameter less than 10 nm, other models should be adopted for judgment.
- (3)
- NMR experiment in the characterization of pore structure has strong applicability and simple sample preparation. The test process is convenient, fast, and will not affect the pore structure of the sample. However, because of the differential damage of the centrifugal force in the centrifugal experiment on the development of coal samples with different structures, it is necessary to take some measures to compensate for the loss portion of NMR signal.
- (4)
- Coals at high coal rank are commonly having higher microporosity, and therefore a less permeable property could establish when no fractures existed. Such a relationship is apparent for coals with high carbon content due to the larger amount of super micropores and micropores.
Author Contributions
Funding
Conflicts of Interest
References
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.; Li, J.; Qiu, Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- IUPAC. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Hodot, B.B. Outburst of Coal and Coalbed Gas (Chinese Translation); China Industry Press: Beijing, China, 1966; p. 318. [Google Scholar]
- Cai, Y.; Li, Q.; Liu, D.; Zhou, Y.; Lv, D. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption. Int. J. Coal Geol. 2018, 200, 199–212. [Google Scholar] [CrossRef]
- Zheng, S.; Yao, Y.; Liu, D.; Cai, Y.; Liu, Y.; Li, X. Nuclear magnetic resonance T2 cutoffs of coals: A novel method by multifractal analysis theory. Fuel 2019, 241, 715–724. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Li, J.Q. Coal pore-fracture characterized based on quantitative X-CT and NMR. Sci. China Earth Sci. 2010, 40, 1598–1607. [Google Scholar]
- Cai, Y.D.; Liu, D.M.; Yao, Y.B.; Li, J.Q.; Zheng, G.Q. The evolution of petrophysical properties of coalbed methane reservoirs under the heat treatment. Earth Sci. Front. 2014, 21, 240–248. [Google Scholar]
- Wu, S.; Tang, D.Z.; Li, S.; Meng, Y.J.; Lin, W.J. Evaluation of pore development in different coal reservoirs based on centrifugation experiment. J. Pet. Sci. Eng. 2017, 157, 1095–1105. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, S.; Tang, D.; Pan, Z.; Yang, F. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China. Int. J. Coal Geol. 2010, 81, 117–127. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Pan, Z.; Che, Y.; Liu, Z. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis. Transp. Porous Media 2016, 111, 479–497. [Google Scholar] [CrossRef]
- Li, X.; Kang, Y.; Haghighi, M. Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP). Measurement 2018, 116, 122–128. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S.; Xiao, D.; Li, B. Pore structure characteristics of tight sandstones in the northern Songliao Basin, China. Mar. Pet. Geol. 2017, 88, 170–180. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L. Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 22, 530–539. [Google Scholar] [CrossRef]
- Groen, J.; Peffer, L.; Pérez-Ramírez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mat. 2003, 60, 1387–1811. [Google Scholar] [CrossRef]
- Pan, J.; Wang, K.; Hou, Q.; Niu, Q.; Wang, H.; Ji, Z. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel 2016, 164, 277–285. [Google Scholar] [CrossRef]
- Nie, B.; Liu, X.; Yang, L.; Meng, J.; Li, X. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 2015, 158, 908–917. [Google Scholar] [CrossRef]
- Fang, X.; Cai, Y.; Liu, D.; Zhou, Y. A mercury intrusion porosimetry method for methane diffusivity and permeability evaluation in coals: A comparative analysis. Appl. Sci. 2018, 8, 860. [Google Scholar] [CrossRef]
Sample No. | Coal Basin | Ro, max/% | Coal Composition (Vol.%) | Proximate Analysis (wt%) | Porosity/% | Permeability/mD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitrinite | Inertinite | Exinite | Mineral | Mad | Aad | Vad | FCad | |||||
TB | Junggar | 0.45 | 63.7 | 18.5 | 1.4 | 16.4 | 7.0 | 8.3 | 33.9 | 50.8 | 19.07 | N/A |
BS | 0.51 | 67.3 | 11.0 | 5.2 | 16.5 | 12.8 | 6.0 | 27.4 | 53.9 | 17.52 | N/A | |
SW | 0.53 | 73.1 | 20.4 | 6.5 | 0 | 3.1 | 6.9 | 33.7 | 56.3 | 9.18 | 0.029 | |
TA | Erdos | 0.58 | 71.6 | 9.9 | N/A | N/A | 2.0 | 21.3 | 27.7 | 49.0 | 4.07 | 0.002 |
FL | Junggar | 0.65 | 87.6 | 7.0 | 0.2 | 5.2 | 3.8 | 8.9 | 39.2 | 48.2 | 3.02 | 0.001 |
BD | Erdos | 0.76 | 68.2 | 23.6 | 5.6 | 2.5 | 3.0 | 13.9 | 32.4 | 50.7 | 5.75 | 0.004 |
SL | 1.06 | N/A | N/A | N/A | N/A | 4.9 | 4.0 | 19.6 | 71.5 | 7.94 | N/A | |
WJY | 1.37 | N/A | N/A | N/A | N/A | 1.6 | 33.7 | 22.6 | 42.1 | 4.18 | N/A | |
TL | Qinshui | 1.63 | N/A | N/A | N/A | N/A | 3.2 | 10.5 | 23.8 | 62.6 | 4.72 | N/A |
QLT | Erdos | 1.77 | 59.4 | 24.4 | 6.5 | 9.8 | 0.8 | 13.7 | 28.6 | 56.8 | 2.07 | 0.014 |
DEP | Qinshui | 1.90 | 64.2 | 23.3 | 0 | 12.6 | 0.7 | 15.2 | 36.6 | 47.6 | 1.38 | 0.004 |
HS | 2.02 | 83.3 | 11.8 | 0 | 4.9 | 0.7 | 25.3 | 33.0 | 41.1 | 4.15 | 0.348 | |
DP | 2.21 | 83.9 | 13.4 | 0 | 2.7 | 0.9 | 5.4 | 18.4 | 75.4 | 5.90 | 0.026 | |
CYH | 2.32 | 73.9 | 21.5 | 0 | 4.6 | 1.0 | 10.2 | 12.0 | 76.8 | 5.80 | 0.117 | |
WK | 2.54 | 76.0 | 15.5 | 0 | 8.5 | 1.4 | 11.1 | 12.5 | 75.1 | 5.98 | 0.186 | |
SK | 3.03 | 83.6 | 12.2 | 0 | 4.3 | 0.7 | 10.5 | 5.1 | 83.7 | 4.59 | 0.022 |
Sample No. | BET SSA/(m2/g) | BJH PV/(10−3 mL/g) | Dp/nm | PV Percentage/% | Ad./De. Curve Type | ||
---|---|---|---|---|---|---|---|
<10 nm | 10 ~ 100 nm | >100 nm | |||||
TB | 1.879 | 4.90 | 7.19 | 25.0 | 59.5 | 15.5 | II |
BS | 1.858 | 6.95 | 7.09 | 26.5 | 55.1 | 18.4 | I |
SW | 0.559 | 2.28 | 9.02 | 23.3 | 59.1 | 17.6 | I |
TA | 2.190 | 5.06 | 2.80 | 64.4 | 28.0 | 7.6 | II |
FL | 0.116 | 0.47 | 7.69 | 17.5 | 61.0 | 21.5 | I |
BD | 2.585 | 7.07 | 5.61 | 42.7 | 49.0 | 8.3 | III |
SL | 5.030 | 13.46 | 4.07 | 54.7 | 36.0 | 9.3 | III |
WJY | 4.083 | 7.53 | 3.12 | 59.6 | 31.9 | 8.5 | III |
TL | 1.654 | 5.24 | 5.28 | 43.9 | 47.4 | 8.7 | II |
QLT | 0.477 | 2.55 | 8.49 | 22.9 | 60.8 | 16.3 | II |
DEP | 0.375 | 1.60 | 7.60 | 23.2 | 59.7 | 17.1 | I |
HS | 0.314 | 1.13 | 7.18 | 25.2 | 58.7 | 16.1 | I |
DP | 0.816 | 2.00 | 4.91 | 27.1 | 51.5 | 21.4 | II |
CYH | 0.303 | 1.97 | 13.00 | 17.4 | 69.5 | 13.1 | II |
WK | 0.246 | 0.87 | 15.55 | 14.1 | 68.8 | 17.1 | II |
SK | 0.928 | 1.84 | 2.76 | 48.7 | 36.9 | 14.4 | II |
Monitoring of Water Quality/g | NMR Signal Amplitude | Monitoring of Water Quality/g | NMR Signal Amplitude |
---|---|---|---|
0.24 | 2573.55 | 1.66 | 15887.65 |
0.43 | 3872.32 | 1.85 | 16249.25 |
1.25 | 10665.00 | 2.04 | 18723.98 |
1.49 | 14784.90 | 2.56 | 23895.78 |
Sample No. | NMR Porosity/% | T2C/ms | Pore Volume/% | |||
---|---|---|---|---|---|---|
Micropores | Small Pores | Mesopores | Macropores | |||
TB | 18.66 | 7.76 | 45.20 | 35.18 | 14.49 | 5.13 |
BS | 20.43 | 11.60 | 38.10 | 42.82 | 18.59 | 0.49 |
SW | 7.74 | 1.04 | 3.96 | 60.37 | 12.61 | 23.06 |
TA | 3.06 | 2.77 | 27.16 | 51.44 | 10.78 | 10.62 |
FL | 4.69 | 0.70 | 2.08 | 60.54 | 6.03 | 31.34 |
BD | 4.24 | 2.28 | 22.44 | 63.51 | 5.31 | 8.74 |
SL | 7.04 | 4.45 | 28.47 | 47.68 | 19.01 | 4.84 |
WJY | 2.18 | 1.13 | 3.36 | 55.73 | 16.81 | 24.10 |
TL | 2.87 | 21.65 | 45.59 | 29.34 | 22.73 | 2.34 |
QLT | 0.91 | 12.40 | 51.34 | 7.82 | 37.91 | 2.93 |
DEP | 1.03 | 0.71 | 2.08 | 67.62 | 16.51 | 13.78 |
HS | 4.35 | 15.20 | 47.52 | 12.92 | 31.85 | 7.70 |
DP | 3.23 | 13.80 | 64.13 | 8.29 | 19.88 | 7.70 |
CYH | 2.19 | 25.64 | 78.01 | 4.03 | 13.82 | 4.14 |
WK | 3.66 | 2.27 | 6.98 | 79.81 | 9.56 | 3.66 |
SK | 5.57 | 37.25 | 78.78 | 2.44 | 13.91 | 4.88 |
Sample No. | Mercury Intrusion Porosimetry (MIP) | Nitrogen Adsorption (N2GA) | Nuclear Magnetic Resonance (NMR) | ||||
---|---|---|---|---|---|---|---|
Apparent Density/g/cm3 | Pore Volume/mL/g | Pore Volume/mL/g | Pore Volume /mL/g | ||||
TB | 1.28 | 0.0505 | 6.46 | 0.0049 | 0.63 | .1458 | 18.66 |
BS | 1.34 | 0.1004 | 13.46 | 0.0069 | 0.93 | .1525 | 20.43 |
SW | 1.06 | 0.0492 | 5.21 | 0.0023 | 0.24 | 0.0730 | 7.74 |
TA | 1.57 | 0.0139 | 2.18 | 0.0051 | 0.79 | 0.0195 | 3.06 |
FL | 1.26 | 0.0263 | 3.31 | 0.0005 | 0.06 | 0.0372 | 4.69 |
BD | 1.96 | 0.0150 | 2.94 | 0.0071 | 1.39 | 0.0216 | 4.24 |
SL | 1.41 | 0.0349 | 4.92 | 0.0135 | 1.90 | 0.0499 | 7.04 |
WJY | 1.72 | 0.0119 | 2.05 | 0.0075 | 1.30 | 0.0127 | 2.18 |
TL | 1.24 | 0.0123 | 1.53 | 0.0052 | 0.65 | 0.0231 | 2.87 |
QLT | 1.31 | 0.0033 | 0.43 | 0.0025 | 0.33 | 0.0069 | 0.91 |
DEP | 1.34 | 0.0075 | 1.00 | 0.0016 | 0.21 | 0.0077 | 1.03 |
HS | 1.22 | 0.0184 | 2.25 | 0.0011 | 0.14 | 0.0357 | 4.35 |
DP | 1.31 | 0.0087 | 1.14 | 0.0020 | 0.26 | 0.0247 | 3.23 |
CYH | 1.42 | 0.0034 | 0.48 | 0.0020 | 0.28 | 0.0154 | 2.19 |
WK | 1.59 | 0.0209 | 3.33 | 0.0009 | 0.14 | 0.0230 | 3.66 |
SK | 1.28 | 0.0091 | 1.17 | 0.0018 | 0.24 | 0.0435 | 5.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Yang, Y.; Lu, X.; Liu, D.; Li, X.; Zhang, Q.; Cai, Y. Pore Structure of Coals by Mercury Intrusion, N2 Adsorption and NMR: A Comparative Study. Appl. Sci. 2019, 9, 1680. https://doi.org/10.3390/app9081680
Zhu Q, Yang Y, Lu X, Liu D, Li X, Zhang Q, Cai Y. Pore Structure of Coals by Mercury Intrusion, N2 Adsorption and NMR: A Comparative Study. Applied Sciences. 2019; 9(8):1680. https://doi.org/10.3390/app9081680
Chicago/Turabian StyleZhu, Qingzhong, Yanhui Yang, Xiuqin Lu, Dameng Liu, Xiawei Li, Qianqian Zhang, and Yidong Cai. 2019. "Pore Structure of Coals by Mercury Intrusion, N2 Adsorption and NMR: A Comparative Study" Applied Sciences 9, no. 8: 1680. https://doi.org/10.3390/app9081680
APA StyleZhu, Q., Yang, Y., Lu, X., Liu, D., Li, X., Zhang, Q., & Cai, Y. (2019). Pore Structure of Coals by Mercury Intrusion, N2 Adsorption and NMR: A Comparative Study. Applied Sciences, 9(8), 1680. https://doi.org/10.3390/app9081680