The Importance of Assessing the Level of Service in Confined Infrastructures: Some Considerations of the Old Ottoman Pedestrian Bridge of Mostar
Abstract
1. Introduction
2. State of the Art
2.1. Level of Service LOS Definition
2.2. Case Study Details
3. Methodology
3.1. Social Force Model Development
3.2. Microsimulation Approach
3.3. Calibration Procedures
- “default” setting used in the 2nd scenario;
- “normal” setting, assigned to the 1st-3rd-5th-6th scenarios respectively;
- “evacuation” setting applied in the 4th scenario.
4. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282. [Google Scholar] [CrossRef]
- Helbing, D.; Buzna, L.; Johansson, A.; Werner, T. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp. Sci. 2005, 39, 1–24. [Google Scholar] [CrossRef]
- Zanlungo, F.; Ikeda, T.; Kanda, T. Social force model with explicit collision prediction. Europhys. Lett. 2011, 93, 68005. [Google Scholar] [CrossRef]
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487. [Google Scholar] [CrossRef]
- Carroll, P.S.; Owen, S.J.; Hussein, F.M.M. Modelling crowd–bridge dynamic interaction with a discretely defined crowd. J. Sound Vib. 2012, 331, 2685–2709. [Google Scholar] [CrossRef]
- Jiménez-Alonso, F.J.; Sáez, A.; Caetano, E.; Magalhães, F. Vertical crowd–structure interaction model to analyze the change of the modal properties of a footbridge. J. Bridg. Eng. 2016, 21, C4015004. [Google Scholar] [CrossRef]
- Basbas, S.; Nikiforiadis, A.; Sarafianou, E.; Kolonas, N. Behavior and Perceptions of University Students at Pedestrian Crossings. In Proceedings of the 4th Conference on Sustainable Urban Mobility, Skiathos Island, Greece, 24–25 May 2018; pp. 280–287. [Google Scholar]
- Collotta, M.; Pau, G.; Scatà, G.; Campisi, T. A dynamic traffic light management system based on wireless sensor networks for the reduction of the red-light running phenomenon. Transp. Telecommun. 2014, 15, 1–11. [Google Scholar] [CrossRef]
- Zakaria, J.; Ujang, N. Comfort of walking in the city center of Kuala Lumpur. Procedia Soc. Behav. Sci. 2015, 170, 642–652. [Google Scholar] [CrossRef]
- Antonini, G.; Bierlaire, M.; Weber, M. Discrete choice models of pedestrian walking behavior. Transp. Res. Part B Methodol. 2006, 40, 667–687. [Google Scholar] [CrossRef]
- Kormanová, A. A review on macroscopic pedestrian flow modelling. Acta Inf. Pragensia 2014, 2, 39–50. [Google Scholar] [CrossRef]
- Varas, A.; Cornejo, M.D.; Mainemer, D.; Toledo, B.; Rogan, J.; Munoz, V.; Valdivia, J.A. Cellular automaton model for evacuation process with obstacles. Phys. A Stat. Mech. Appl. 2007, 382, 631–642. [Google Scholar] [CrossRef]
- Okazaki, S. A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the application on of magnetic models. Trans. AIJ 1979, 283, 111–119. [Google Scholar]
- Kretz, T.; Mayer, G.; Mühlberger, A. Behaviour and perception-based pedestrian evacuation simulation. In Pedestrian and Evacuation Dynamics; Springer: Boston, MA, USA, 2011; pp. 827–831. [Google Scholar]
- Helbing, D.; Molnár, P.; Farkas, J.I.; Bolay, K. Self-organizing pedestrian movement. Environ. Plan. B Plan. Des. 2001, 28, 361–383. [Google Scholar] [CrossRef]
- Kadali, R.B.; Vedagiri, P. Review of the pedestrian level of service: Perspective in developing countries. Transp. Res. Rec. J. Transp. Res. Board 2016, 2581, 37–47. [Google Scholar] [CrossRef]
- Fruin, J.J. Designing for Pedestrians: A Level-of-Service Concept; Public Transportation United States: Washington, DC, USA, 1992. [Google Scholar]
- Môri, M.; Tsukaguchi, H. A New Method for Evaluation of Level of Service in Pedestrian Facilities. Transp. Res. Part A 1987, 21, 223–234. [Google Scholar] [CrossRef]
- Sarkar, S. Determination of Service Levels for Pedestrians, with European Examples. Transp. Res. Rec. 1993, 1405, 35–42. [Google Scholar]
- Khisty, J.C. Evaluation of Pedestrian Facilities: Beyond the Levelof- Service Concept. Transp. Res. Rec. 1994, 1438, 45–50. [Google Scholar]
- Manual, H.C. Highway Capacity Manual; Transportation Research Board: Washington, DC, USA, 2000. [Google Scholar]
- Landis, B.; Vattikuti, V.; Ottenberg, R.; McLeod, D.; Guttenplan, M. Modeling the Roadside Walking Environment: Pedestrian LOS. Transp. Res. Rec. 2001, 1773, 82–88. [Google Scholar] [CrossRef]
- Muraleetharan, T.; Adachi, T.; Hagiwara, T.; Kagaya, S. Method to Determine Pedestrian Level-of-Service for Crosswalks at Urban Intersections. J. East. Asia Soc. Transp. Stud. 2005, 6, 127–136. [Google Scholar]
- Hummer, J.; Rouphail, N.; Hughes, R.G.; Fain, S.J.; Toole, J.L.; Patten, R.S.; Schneider, R.J.; Monahan, J.F.; Do, A. User Perceptions of the Quality of Service on Shared Paths. Transp. Res. Rec. 2005, 1939, 28–36. [Google Scholar] [CrossRef]
- Petritsch, A.T.; Landis, B.W.; McLeod, P.S.; Huang, H.F.; Challa, S.; Guttenplan, M. Level-of-Service Model for Pedestrians at Signalized Intersections. Transp. Res. Rec. J. Transp. Res. Board 2005, 1939, 55–62. [Google Scholar] [CrossRef]
- Bian, Y.; Wang, W.; Lu, J.; Junlai, M.; Dandan, T. Pedestrian Level of Service for Sidewalks in China. In Proceedings of the 86th Annual Meeting of Transportation Research Board, Washington, DC, USA, 21–25 January 2007. [Google Scholar]
- Dandan, T.; Wei, W.; Jian, L.; Yang, B. Research on Methods of Assessing Pedestrian Level of Service for Sidewalks. J. Transp. Syst. Eng. Inf. Technol. 2007, 7, 74–79. [Google Scholar]
- Parida, P.; Parida, M. Modelling Qualitative Level of Service for Sidewalks in Delhi. In Proceedings of the International Conference on the Best Practices to Relieve Congestion on Mixed-Traffic Urban Streets in Developing Countries, Chennai, India, 12–14 September 2008; pp. 295–304. [Google Scholar]
- Jayaprakash, P.O.; Gunasekaran, K. Application of TRB model for evaluation of pedestrian LOS under Indian conditions. In Proceedings of the International Conference on the Best Practices to Relieve Congestion on Mixed-Traffic Urban Streets in Developing Countries, Chennai, India, 12–14 September 2008; pp. 287–293. [Google Scholar]
- Kotkar, L.K.; Rastogi, R.; Chandra, S. Pedestrian flow characteristics in mixed flow conditions. J. Urban Plan. Dev. 2010, 136, 23–33. [Google Scholar]
- Rastogi, R.; Chandra, S.; Mohan, M. Development of level of service criteria for pedestrians. J. Indian Roads Congr. 2014, 75, 61–70. [Google Scholar]
- Cepolina, M.E.; Menichini, F.; Rojas, G.P. Level of service of pedestrian facilities: Modelling human comfort perception in the evaluation of pedestrian behaviour patterns. Transp. Res. Part F Traffic Psychol. 2018, 58, 365–381. [Google Scholar] [CrossRef]
- Gorrini, A.; Vizzari, G.; Bandini, S. Age and group-driven pedestrian behaviour: From observations to simulations. Collect. Dyn. 2016, 1, 1–16. [Google Scholar] [CrossRef]
- Gorrini, A.; Bandini, S.; Vizzari, G. Empirical investigation on pedestrian crowd dynamics and grouping. Traffic Granul. Flow 2015, 13, 83–91. [Google Scholar]
- Fruin, J.J. Pedestrian Planning and Design; Metropolitan Association of Urban Designers and Environmental Planners: New York, NY, USA, 1971. [Google Scholar]
- Seneviratne, N.P.; Morrall, F.J. Level of service on pedestrian facilities. Transp. Q. 1985, 39, 109–123. [Google Scholar]
- National Research Council. Highway Capacity Manual (HCM 2010); Transportation Research Board: Washington, DC, USA, 2010. [Google Scholar]
- Itami, M.R. Estimating Capacities for Pedestrian Walkways and Viewing Platforms; A Report to Parks Victoria; Parks Victoria: Melbourne, Australia, 13 June 2002. [Google Scholar]
- Zegeer, V.C. Pedestrian Facilities Users Guide: Providing Safety and Mobility; US Department of Transportation, Federal Highway Administration (FHWA): McLean, VA, USA, 2002.
- PTV Group. PTV Viswalk; PTV Group: Karlsruhe, Germany, 2011. [Google Scholar]
- Allen, P.D.; Rouphail, N.; Hummer, J.; Milazzo, J. Operational analysis of uninterrupted bicycle facilities. Transp. Res. Rec. J. Transp. Res. Board 1998, 1636, 29–36. [Google Scholar] [CrossRef]
- Milazzo, J.S., II; Rouphail, N.M.; Hummer, J.E.; Allen, D.P. Quality of service for interrupted-flow pedestrian facilities in highway capacity manual 2000. Transp. Res. Rec. J. Transp. Res. Board 1999, 1678, 25–31. [Google Scholar] [CrossRef]
- Forde, S. The bridge on the Neretva: Stari Most as a stage of memory in post-conflict Mostar, Bosnia–Herzegovina. Coop. Confl. 2016, 51, 467–483. [Google Scholar] [CrossRef]
- Buchmueller, S.; Weidmann, U. Parameters of Pedestrians, Pedestrian Traffic and Walking Facilities. IVT Schriftenreihe 2006, 132. [Google Scholar] [CrossRef]
- PTV Group. PTV Vissim 9.0 User Manual; PTV Group: Karlsruhe, Germany, 2014. [Google Scholar]
- Giuffrè, O.; Granà, A.; Giuffrè, T.; Marino, R.; Campisi, T. An Italian experience on crash modelling for roundabouts. J. Eng. Appl. Sci. 2015, 10, 2471–2478. [Google Scholar]
- Pau, G.; Campisi, T.; Canale, A.; Severino, A.; Collotta, M.; Tesoriere, G. Smart Pedestrian Crossing Management at Traffic Light Junctions through a Fuzzy-Based Approach. Future Internet 2018, 10, 15. [Google Scholar]
- Campisi, T.; Tesoriere, G.; Canale, A. Microsimulation approach for BRT system: The case study of urban turbo-roundabout. AIP Conf. Proc. 2017, 1906, 190005. [Google Scholar]
- Tollazzi, T.; Tesoriere, G.; Guerrieri, M.; Campisi, T. Environmental, functional and economic criteria for comparing “target roundabouts” with one-or two-level roundabout intersections. Transp. Res. Part D Transp. Environ. 2015, 34, 330–344. [Google Scholar] [CrossRef]
- Otković, I.I.; Tollazzi, T.; Šraml, M. Analysis of the influence of car-following input parameters on the modelled travelling time. Tehničkivjesnik Znanstveno-Stručničasopistehničkih Fakulteta Sveučilišta u Osijeku 2013, 20, 919–925. [Google Scholar]
- Helbing, D.; Farkas, J.I.; Molnar, P.; Vicsek, T. Simulation of pedestrian crowds in normal and evacuation situations. Pedestr. Evac. Dyn. 2002, 21, 21–58. [Google Scholar]
- Kadali, B.R.; Vedagiri, P. Modelling pedestrian road crossing behaviour under mixed traffic condition. Eur. Transp. 2013, 55, 1–17. [Google Scholar]
- Johansson, A.; Helbing, D.; Shukla, P. Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data. Adv. Complex Syst. 2007, 10, 271–288. [Google Scholar] [CrossRef]
- Kretz, T. On oscillations in the social force model. Phys. A Stat. Mech. Appl. 2015, 438, 272–285. [Google Scholar] [CrossRef]
- Korhonen, T. Technical Reference and User’s Guide for Fire Dynamics Simulator with Evacuation; VTT Technical Research Center of Finland: Espoo, Finland, 2017. [Google Scholar]
- Jobanputra, R.; Vanderschuren, M. The Development and Calibration of an Agent-Based Microsimulation Model for Vehicle-Pedestrian Interaction. In Pedestrian and Evacuation Dynamics; Springer: Cham, Switzerland, 2014; pp. 1001–1011. [Google Scholar]
- Hoogendoorn, P.S.; Daamen, W.; Bovy, H.P. Extracting microscopic pedestrian characteristics from video data. In Proceedings of the Transportation Research Board Annual Meeting, Washington, DC, USA, 12–16 January 2003; Volume 9, pp. 1–15. [Google Scholar]
- Li, S.; Sayed, T.; Zaki, M.H.; Mori, G.; Stefanus, F.; Khanloo, B.; Saunier, N. Automated collection of pedestrian data through computer vision techniques. Transp. Res. Rec. 2012, 2299, 121–127. [Google Scholar] [CrossRef]
- Boltes, M.; Seyfried, A.; Steffen, B.; Schadschneider, A. Automatic Extraction of Pedestrian Trajectories from Video Recordings. Pedestr. Evac. Dyn. 2008, 2010, 43–54. [Google Scholar]
- Laureshyn, A. Application of Automated Video Analysis to Road User Behavior; Departmentof Technology and Society, Faculty of Engineering, LTH, Lund University: Lund, Sweden, 2010. [Google Scholar]
- Laureshyn, A. T-Analyst Software. 2013. Available online: http://www.tft.lth.se/video/cooperation/software (accessed on 1 January 2019).
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef]
Period | Author | Parameters Correlated with LOS |
---|---|---|
1971 | Fruin [17] | Human convenience and the design of environment. |
1987 | Mori and Tsukaguchi [18] | Pedestrian flow, speed and density relationship, and their overtaking maneuvers. |
1993 | Sarkar [19] | Qualitative measures like safety, security, comfort and convenience, continuity, system coherence and attractiveness. |
1994 | Khisty [20] | Contribution of environmental factors towards service levels of pedestrians’ facilities by adopting suitable performance measures. |
2000 | HCM manual [21] | Analysis of pedestrian flow on sidewalks, crosswalks and street corners mainly derived from John Fruin’s research. |
2001 | Landis et al. [22] | Pedestrian perceptions of the quality of service. |
2004 | Muraleetharan et al. [23] | Total utility value of a facility based on sidewalk width and separation, obstructions, flow rate andbicycleevents. |
2005 | Hummer et al. [24] | Path operations and found that the path width, the number of meeting and passing events and the presence of a center line are the key variables in determining in pedestrianperception |
2006 | Petritsch et al. [25] | Traffic volume, sidewalk’s adjacent roadway width and the density of conflict points |
2007 | Bian et al. [26] | A sidewalk intercept survey to measure pedestrian perceptions of sidewalk LOS and relative changing value |
Dandan et al. [27] | Relationship between pedestrians’ subjective perceptions, the quality of physical facilities and the traffic flow operation | |
2008 | Parida and Parida [28] | LOS related to the physical parameters like sidewalk width, sidewalk surface, obstruction, encroachment, potential of vehicular conflict and continuity |
Jayaprakash and Gunasekharan [29] | They found that the Lendis model overestimates the pedestrian LOS as compared to the HCM (2000) model | |
2010 | Kotkar et al. [30] | They consider the pedestrian movements along the carriageway (on or at side) and on a pedestrian facility |
2014 | Rastogi, et al. [31] | Pedestrian movements along the carriageway (on or at side) and on a pedestrian facility |
2018 | Cepolina et al. [32] | Modeling human comfort perception in the evaluation of pedestrian behavior patterns |
Level of Service LOS | ||||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
Period (1971) | FRUIN | |||||
space (m2/ped) | >3.20 | 2.3–3.2 | 1.4–2.3 | 0.9–1.4 | 0.5–0.9 | <0.5 |
flow rate (ped/min/m) | <23 | 23–33 | 33–49 | 49–66 | 66–82 | variable |
Period (2000) | HCM | |||||
space (m2/ped) | <4.80 | 3.54–4.8 | 1.74–3.54 | 1.14–1.74 | 0.59–1.14 | <0.59 |
flow rate (ped/min/m) | <16 | 16–23 | 23–33 | 33–49 | 49–75 | variable |
Fruin Walkway LOS | ||||||
---|---|---|---|---|---|---|
Ped/m/min | Ped/min/m | Ped/m2 | Side Size (m) | Flow Condition | ||
A | <23 | <7 | 0.08 | 1.93–1.80 | Free flow | |
B | 23.0–32.8 | 7–23 | 0.08–0.27 | 1.80–1.67 | Minor conflicts | |
C | 32.8–48.2 | 23–33 | 0.27–0.45 | 1.67–1.52 | Slower speed | |
D | 48.2–65.6 | 33–49 | 0.45–0.69 | 1.52–1.36 | Restricted most | |
E | 65.6–82 | 49–82 | 0.69–1.66 | 1.36–1.18 | Restricted all | |
F | >82 | >82 | >1.66 | 0.95–0.68 | Shuffling |
LOS | Stairs | Waiting Area | ||||
---|---|---|---|---|---|---|
Space (m2/ped) | Flow Rate (ped/min/m) | Average Speed Horiz. (m/min) | Average Speed Horiz. (m/s) | Space (m2/ped) | Interspacing Area (m) | |
A | 1.9 | 16 | 32 | 0.53 | >1.21 | 1.2 |
B | 1.6–1.9 | 16–20 | 32 | 0.53 | 0.93–1.21 | 0.9–1.2 |
C | 1.1–1.6 | 20–26 | 29–32 | 0.48 | 0.65–0.93 | 0.7–0.9 |
D | 0.7–1.1 | 26–36 | 25–29 | 0.42 | 0.27–0.65 | 0.3–0.7 |
E | 0.5–0.7 | 36–49 | 24–25 | 0.4 | 0.19–0.27 | <0.3 |
F | <0.5 | Var. | <24 | <0.40 | <0.19 | Negligible |
Scenario | Ramp | Flow (ped/h) | Flow Condition | Vissim Pedestrian Modes |
---|---|---|---|---|
1st | 1500 | Daily | Normal | |
2nd | 3000 | Max | Default | |
3rd | 3000 | Max | Normal | |
4th | 1650 | Evacuation | Evacuation | |
5th | 1500 | Maintenance | Normal | |
6th | 3000 | Maintenance | Normal | |
7th | 1650 | Maintenance + Evacuation | Evacuation |
Viswalk Parameters | Default | Normal | Evacuation |
---|---|---|---|
tau (τ) | 0.40 | 0.06 | 0.06 |
react_to_n parameter | 8 | 4 | 2 |
ASocIso BSocIso | 2.72 0.20 | 1 0.10 | 1 0.10 |
Lambda (λ) | 0.176 | 0.176 | 0.176 |
ASocMean | 0.40 | 0.40 | 0.40 |
BSocMean | 2.80 | 2.80 | 2.80 |
VD | 3 | 9 | 6 |
Noise | 1.2 | 1.2 | 2.4 |
PrefLato | nothing | nothing | nothing |
LOS | Density (ped/m2) | Space (m2/ped) | Flow Rate (ped/min/m) | Av. Speed (m/s) | Capacity v/c Ratio |
---|---|---|---|---|---|
A | ≤0.27 | ≥3.24 | ≤23 | ≤1.3 | 0–0.3 |
B | 0.43–0.31 | 2.32–3.24 | 23–33 | 1.27 | 0.3–0.4 |
C | 0.72–0.43 | 1.39–2.32 | 33–49 | 1.22 | 0.4–0.6 |
D | 1.08–0.72 | 0.9–1.39 | 49–66 | 1.14 | 0.6–0.8 |
E | 2.17–1.08 | 0.46–0.93 | 66–82 | 0.76 | 0.8–1.0 |
F | >2.17 | ≤0.46 | variable | ≤0.76 | variable |
LOS | Max RAMP Speed (km/h) | Max AREA Speed (km/h) | Colour |
---|---|---|---|
A | >2.7 | >2.153 | |
B | 2.7 | 2.153 | |
C | 1.53 | 1.076 | |
D | 1.076 | 0.718 | |
E | 0.718 | 0.431 | |
F | 0.538 | 0.308 |
Case Study | LOS Layout | Pedestrian Flow | LOS AREA | LOS RAMP |
---|---|---|---|---|
1ST SCENARIO | 1.500 ped/h DAILY CONDITION | AW1 = LOS B AW2 = LOS C AW3 = LOS B AE1 = LOS B AE2 = LOS C AE3 = LOS B | RW1 = LOS C RW2 = LOS C RE1 = LOS C RE2 = LOS C | |
2ND SCENARIO | 3.000 ped/h DAILY CONDITION | AW1 = LOS F AW2 = LOS F AW3 = LOS F AE1 = LOS F AE2 = LOS F AE3 = LOS F | RW1 = LOS F RW2 = LOS F RE1 = LOS F RE2 = LOS F | |
3RD SCENARIO | 3.000 ped/h DAILY CONDITION | AW1 = LOS C AW2 = LOS C AW3 = LOS B AE1 = LOS B AE2 = LOS D AE3 = LOS C | RW1 = LOS D RW2 = LOS D RE1 = LOS D RE2 = LOS B | |
4TH SCENARIO | 1.650 ped/h EVACUATION | AW1 = LOS B AW2 = LOS B AW3 = LOS B AE1 = LOS B AE2 = LOS C AE3 = LOS B | RW1 = LOS C RW2 = LOS C RE1 = LOS C RE2 = LOS C | |
5TH SCENARIO | 1.500 ped/h MAINTENANCE | AW1 = LOS B AW2 = LOS C AW3 = LOS C AE1 = LOS B AE2 = LOS C AE3 = LOS B | RW1 = LOS C RW2 = LOS C RE1 = LOS D RE2 = LOS D | |
6TH SCENARIO | 3.000 ped/h MAINTENANCE | AW1 = LOS C AW2 = LOS B AW3 = LOS C AE1 = LOS B AE2 = LOS C AE3 = LOS B | RW1 = LOS D RW2 = LOS D RE1 = LOS E RE2 = LOS D | |
7TH SCENARIO | 1.650 ped/h EVACUATION + MAINTENANCE | AW1 = LOS B AW2 = LOS B AW3 = LOS B AE1 = LOS B AE2 = LOS C AE3 = LOS B | RW1 = LOS C RW2 = LOS C RE1 = LOS F RE2 = LOS C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campisi, T.; Canale, A.; Tesoriere, G.; Lovric, I.; Čutura, B. The Importance of Assessing the Level of Service in Confined Infrastructures: Some Considerations of the Old Ottoman Pedestrian Bridge of Mostar. Appl. Sci. 2019, 9, 1630. https://doi.org/10.3390/app9081630
Campisi T, Canale A, Tesoriere G, Lovric I, Čutura B. The Importance of Assessing the Level of Service in Confined Infrastructures: Some Considerations of the Old Ottoman Pedestrian Bridge of Mostar. Applied Sciences. 2019; 9(8):1630. https://doi.org/10.3390/app9081630
Chicago/Turabian StyleCampisi, Tiziana, Antonino Canale, Giovanni Tesoriere, Ivan Lovric, and Boris Čutura. 2019. "The Importance of Assessing the Level of Service in Confined Infrastructures: Some Considerations of the Old Ottoman Pedestrian Bridge of Mostar" Applied Sciences 9, no. 8: 1630. https://doi.org/10.3390/app9081630
APA StyleCampisi, T., Canale, A., Tesoriere, G., Lovric, I., & Čutura, B. (2019). The Importance of Assessing the Level of Service in Confined Infrastructures: Some Considerations of the Old Ottoman Pedestrian Bridge of Mostar. Applied Sciences, 9(8), 1630. https://doi.org/10.3390/app9081630