A Quantitative Investigation on the Peripheral Nerve Response within the Small Strain Range
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Framework
2.2. Stretching Experiments
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Rodriguez, F.J.; Giannini, C.; Spinner, R.J.; Perry, A. 15-Tumors of Peripheral Nerve. In Practical Surgical Neuropathology: A Diagnostic Approach, 2nd ed.; Perry, A., Brat, D.J., Eds.; Elsevier: New York, NY, USA, 2018; pp. 323–373. [Google Scholar]
- Scheithauer, B.W.; Kovacs, K.; Horvath, E.; Silva, A.I.; Lloyd, R.V. 18-Pathology of the Pituitary and Sellar Region. In Practical Surgical Neuropathology; Perry, A., Brat, D.J., Eds.; Churchill Livingstone: New York, NY, USA, 2010; pp. 371–416. [Google Scholar]
- Nukada, H. Ischemia and diabetic neuropathy. In Diabetes and the Nervous System; Handbook of Clinical Neurology; Zochodne, D.W., Malik, R.A., Eds.; Elsevier: New York, NY, USA, 2014; Chapter 31; Volume 126, pp. 469–487. [Google Scholar]
- Lundborg, G.; Hansson, H.A. Regeneration of peripheral nerve through a preformed tissue space. Preliminary observations on the reorganization of regenerating nerve fibres and perineurium. Brain Res. 1979, 178, 573–576. [Google Scholar] [CrossRef]
- Zochodne, D.W.; Low, P.A. Adrenergic control of nerve blood flow. Exp. Neurol. 1990, 109, 300–307. [Google Scholar] [CrossRef]
- Sunderland, S. The intraneural topography of the radial, median and ulnar nerves. Brain 1945, 68, 243–299. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, S. The connective tissues of peripheral nerves. Brain 1965, 88, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Millesi, H. The nerve gap. Theory and clinical practice. Hand Clin. 1986, 2, 651–663. [Google Scholar] [PubMed]
- Millesi, H.; Zoch, G.; Reihsner, R. Mechanical properties of peripheral nerves. Clin. Orthop. Relat. Res. 1995, 314, 76–83. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C. The Finite Element Method; McGraw-Hill Company: London, UK, 1977. [Google Scholar]
- Cook, R.D. Concepts and Applications of Finite Element Analysis; John Wiley and Sons: New York, NY, USA, 1981. [Google Scholar]
- Bathe, K.J. Finite Element Procedures; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Main, E.K.; Goetz, J.E.; Rudert, M.J.; Goreham-Voss, C.M.; Brown, T.D. Apparent transverse compressive material properties of the digital flexor tendons and the median nerve in the carpal tunnel. J. Biomech. 2011, 44, 863–868. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, S.; Tan, J.S.; Myer, C.; Njus, N.M.; Xia, Z. In vitro and in vivo mechanical properties of human ulnar and median nerves. J. Biomed. Mater. Res. A 2013, 101, 2718–2725. [Google Scholar] [CrossRef]
- Giannessi, E.; Stornelli, M.R.; Sergi, P.N. A unified approach to model peripheral nerves across different animal species. PeerJ 2017, 5, e4005. [Google Scholar] [CrossRef]
- Giannessi, E.; Stornelli, M.R.; Sergi, P.N. Fast in silico assessment of physical stress for peripheral nerves. Med. Biol. Eng. Comput. 2018. [Google Scholar] [CrossRef]
- Navarro, X.; Krueger, T.B.; Lago, N.; Micera, S.; Stieglitz, T.; Dario, P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 2005, 10, 229–258. [Google Scholar] [CrossRef] [PubMed]
- Grill, W.M.; Norman, S.E.; Bellamkonda, R.V. Implanted neural interfaces: Biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 2009, 11, 1–24. [Google Scholar] [CrossRef]
- Sergi, P.N.; Carrozza, M.C.; Dario, P.; Micera, S. Biomechanical characterization of needle piercing into peripheral nervous tissue. IEEE Trans. Biomed. Eng. 2006, 53, 2373–2386. [Google Scholar] [CrossRef] [PubMed]
- Cutrone, A.; Sergi, P.N.; Bossi, S.; Micera, S. Modelization of a self-opening peripheral neural interface: A feasibility study. Med. Eng. Phys. 2011, 33, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Lewinsky, I.; Nielsen, M.; Hylleberg, M. Implantation mechanics of tungsten microneedles into peripheral nerve trunks. Med. Biol. Eng. Comput. 2007, 45, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Sergi, P.N.; Jensen, W.; Micera, S.; Yoshida, K. In vivo interactions between tungsten microneedles and peripheral nerves. Med. Eng. Phys. 2012, 34, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Sergi, P.N.; Jensen, W.; Yoshida, K. Interactions among biotic and abiotic factors affect the reliability of tungsten microneedles puncturing in vitro and in vivo peripheral nerves: A hybrid computational approach. Mater. Sci. Eng. C 2016, 59, 1089–1099. [Google Scholar] [CrossRef]
- Bhidayasiri, R.; Tarsy, D. Neuropathic Tremor. In Movement Disorders: A Video Atlas: A Video Atlas; Humana Press: Totowa, NJ, USA, 2012; pp. 72–73. [Google Scholar]
- Topp, K.S.; Boyd, B.S. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Phys. Ther. 2006, 86, 92–109. [Google Scholar] [CrossRef]
- Capurso, M. Lezioni di Scienza delle Costruzioni (In Italian); Pitagora Editrice: Bologna, Italy, 1984. [Google Scholar]
- Bora, F.W.; Richardson, S.; Black, J. The biomechanical responses to tension in a peripheral nerve. J. Hand Surg. 1980, 5, 21–25. [Google Scholar] [CrossRef]
- Fung, Y.C. Biomechanics, Mechanical Properties of Living Tissues; Springer: New York, NY, USA, 1993. [Google Scholar]
- Sunderland, S. Anatomical features of nerve trunks in relation to nerve injury and nerve repair. Clin. Neurosurg. 1970, 17, 38–62. [Google Scholar] [CrossRef]
- Love, A. A Treatise on the Mathematical Theory of Elasticity; Dover Publications: New York, NY, USA, 1927. [Google Scholar]
- Grewal, R.; Xu, J.; Sotereanos, D.; Woo, S.L. Biomechanical properties of peripheral nerves. Hand Clin. 1996, 12, 195–204. [Google Scholar] [PubMed]
- Sunderland, S. The adipose tissue of peripheral nerves. Brain 1945, 68, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Wang, L.; Dong, J.; Zhang, Y.; Luo, P.; Qi, J.; Liu, X.; Xian, C.J. Three-dimensional Reconstruction of Peripheral Nerve Internal Fascicular Groups. Sci. Rep. 2015, 5, 17168. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Martnez, I.; Badia, J.; Pascual-Font, A.; Rodrguez-Baeza, A.; Navarro, X. Fascicular Topography of the Human Median Nerve for Neuroprosthetic Surgery. Front. Neurosci. 2016, 10, 286. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, G.; Sergi, P.N.; Carpaneto, J.; Micera, S. A hybrid approach for the control of axonal outgrowth: Preliminary simulation results. Med. Biol. Eng. Comput. 2011, 49, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Sergi, P.N.; Morana Roccasalvo, I.; Tonazzini, I.; Cecchini, M.; Micera, S. Cell Guidance on Nanogratings: A Computational Model of the Interplay between PC12 Growth Cones and Nanostructures. PLoS ONE 2013, 8, E70304. [Google Scholar] [CrossRef] [PubMed]
- Spira, M.E.; Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 2013, 8, 83. [Google Scholar] [CrossRef]
- Sergi, P.N.; Marino, A.; Ciofani, G. Deterministic control of mean alignment and elongation of neuron-like cells by grating geometry: A computational approach. Integr. Biol. 2015, 7, 1242–1252. [Google Scholar] [CrossRef]
- Roccasalvo, I.M.; Micera, S.; Sergi, P.N. A hybrid computational model to predict chemotactic guidance of growth cones. Sci. Rep. 2015, 5, 11340. [Google Scholar] [CrossRef]
- Sergi, P.N.; Cavalcanti-Adam, E.A. Biomaterials and computation: A strategic alliance to investigate emergent responses of neural cells. Biomater. Sci. 2017, 5, 648–657. [Google Scholar] [CrossRef]





© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannessi, E.; Stornelli, M.R.; Coli, A.; Sergi, P.N. A Quantitative Investigation on the Peripheral Nerve Response within the Small Strain Range. Appl. Sci. 2019, 9, 1115. https://doi.org/10.3390/app9061115
Giannessi E, Stornelli MR, Coli A, Sergi PN. A Quantitative Investigation on the Peripheral Nerve Response within the Small Strain Range. Applied Sciences. 2019; 9(6):1115. https://doi.org/10.3390/app9061115
Chicago/Turabian StyleGiannessi, Elisabetta, Maria Rita Stornelli, Alessandra Coli, and Pier Nicola Sergi. 2019. "A Quantitative Investigation on the Peripheral Nerve Response within the Small Strain Range" Applied Sciences 9, no. 6: 1115. https://doi.org/10.3390/app9061115
APA StyleGiannessi, E., Stornelli, M. R., Coli, A., & Sergi, P. N. (2019). A Quantitative Investigation on the Peripheral Nerve Response within the Small Strain Range. Applied Sciences, 9(6), 1115. https://doi.org/10.3390/app9061115

