High-Speed Photodetectors for Microwave Photonics
Abstract
:1. Introduction
2. High-Power High-Speed Photodiodes
3. Integrated Photodiode-Antenna Emitters
3.1. Photonic Emitter at 60 GHz
3.2. Photonic Emitter at 100 GHz
3.3. Summary of Results Reported in the Literature
4. High-Power Photodiodes on Si
4.1. Heterogenous Photodiodes
4.2. Ge-on-Si Photodiode Arrays
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Cox, C.H., III; Ackerman, E.I.; Betts, G.E.; Prince, J.L. Limits on the Performance of RF-Over-Fiber Links and Their Impact on Device Design. IEEE Trans. Microw. Theory Tech. 2006, 54, 906–920. [Google Scholar] [CrossRef]
- Williams, K.J.; Tulchinsky, D.A.; Boos, J.B.; Park, D.; Goetz, P.G. High Power Photodiode. In Proceedings of the LEOS Summer Topical Meetings, Quebec City, QC, Canada, 17–19 July 2006; pp. 50–51. [Google Scholar]
- Bai, J.; Shi, S.; Schneider, G.J.; Wilson, J.P.; Zhang, Y.; Pan, W.; Prather, D.W. Optically Driven Ultrawideband Phased Array with an Optical Interleaving Feed Network. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 47–50. [Google Scholar]
- Baynes, F.N.; Quinlan, F.; Fortier, T.M.; Zhou, Q.; Beling, A.; Campbell, J.C.; Diddams, S.A. Attosecond timing in optical-to-electrical conversion. Optica 2015, 2, 141–146. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, X.; Li, Q.; Campbell, J.C.; Beling, A. 20 GHz analog photonic link with 16 dB gain based on a high-power balanced photodiode. In Proceedings of the 2015 IEEE Photonics Conference (IPC), Reston, VA, USA, 4–8 October 2015; pp. 144–145. [Google Scholar]
- Ishibashi, T.; Shimizu, N.; Kodama, S.; Ito, H.; Nagatsuma, T.; Furuta, T. Uni-Traveling-Carrier Photodiodes. In Proceedings of the Ultrafast Electronics and Optoelectronics, Incline Village, NV, USA, 17 March 1997; Nuss, M., Bowers, J., Eds.; OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), paper UC3. Volume 13, pp. 83–87. [Google Scholar]
- Kodama, S.; Ito, H. UTC-PD-based optoelectronic components for high-frequency and high-speed applications. IEICE Trans. Electron. 2007, 90, 429–435. [Google Scholar] [CrossRef]
- Ishibashi, T.; Furtua, T.; Fushimi, H.; Ito, H. Photoresponse characteristics of uni-traveling-carrier photodiodes. Proc. SPIE Int. Soc. Opt. Eng. 2001, 4283, 469–479. [Google Scholar]
- Li, Q.; Sun, K.; Li, K.; Yu, Q.; Runge, P.; Ebert, W.; Beling, A.; Campbell, J.C. Campbell High-Power Evanescently Coupled Waveguide MUTC Photodiode With >105-GHz Bandwidth. J. Lightwave Technol. 2017, 35, 4752–4757. [Google Scholar] [CrossRef]
- Li, N.; Sidhu, R.; Li, X.; Ma, F.; Demiguel, S.; Zhen, X.; Holmes, A.L.; Campbell, J.C.; Tulchinsky, D.A.; Williams, K.J. High-saturation-current InGaAs/InAlAs charge-compensated uni-traveling-carrier photodiode. Phys. Status Solidi (a) 2004, 201, 3037–3041. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Q.; Li, K.; Shen, Y.; Li, Q.; Yang, Z.; Beling, A.; Campbell, J.C. Improved power conversion efficiency in high performance photodiodes by flip chip on diamond. Optica 2014, 1, 429–435. [Google Scholar] [CrossRef]
- Li, Q.; Li, K.; Fu, Y.; Xie, X.; Yang, Z.; Beling, A.; Campbell, J.C. High-power flip-chip bonded photodiode with 110 GHz bandwidth. J. Lightwave Technol. 2016, 34, 2139–2144. [Google Scholar] [CrossRef]
- Morgan, J.S.; Sun, K.; Li, Q.; Estrella, S.; Woodson, M.; Hay, K.; Mashanovitch, M.; Beling, A. High-Power Flip-Chip Bonded Modified Uni-Traveling Carrier Photodiodes with −2.6 dBm RF Output Power at 160 GHz. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Zhou, G.; Runge, P.; Keyvaninia, S.; Seifert, S.; Ebert, W.; Mutschall, S.; Seeger, A.; Li, Q.; Beling, A. High-Power InP-Based Waveguide Integrated Modified Uni-Traveling-Carrier Photodiodes. J. Lightwave Technol. 2017, 35, 717–721. [Google Scholar] [CrossRef]
- Park, C.; Rappaport, T.S. Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee. IEEE Wirel. Commun. 2007, 14, 70–78. [Google Scholar] [CrossRef]
- Stohr, A.; Babiel, S.; Cannard, P.J.; Charbonnier, B.; van Dijk, F.; Fedderwitz, S.; Moodie, D.; Pavlovic, L.; Ponnampalam, L.; Renaud, C.C.; et al. Millimeter-wave photonic components for broadband wireless systems. IEEE Trans. Microw. Theory Tech. 2010, 58, 3071–3082. [Google Scholar] [CrossRef]
- Amendment of Parts 2, 15 and 97 of the Comission’s Rules to Permit Use of Radio Frequencies above 40 GHz for New Radio Applications; Federal Communications Commission: Washington, DC, USA, 1995.
- Stöhr, A. Pushing the boundaries. IEEE Microw. Mag. 2009, 10, 106–115. [Google Scholar] [CrossRef]
- Zhou, Q.; Cross, A.S.; Beling, A.; Fu, Y.; Lu, Z.; Campbell, J.C. High-power V-band InGaAs/InP photodiodes. IEEE Photonics Technol. Lett. 2013, 25, 907–909. [Google Scholar] [CrossRef]
- Li, K.; Xie, X.; Li, Q.; Shen, Y.; Woodsen, M.E.; Yang, Z.; Beling, A.; Campbell, J.C. High-power photodiode integrated with coplanar patch antenna for 60-GHz applications. IEEE Photonics Technol. Lett. 2015, 27, 650–653. [Google Scholar] [CrossRef]
- Friis, H.T. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems; IEEE Standard 802.162004; IEEE: New York, NY, USA, 2004.
- Moody, J.; Sun, K.; Li, Q.; Beling, A.; Bowers, S.M. A Vivaldi antenna based W-band MUTC photodiode driven radiator. In Proceedings of the IEEE International Topical Meeting on Microwave Photonics (MWP), Long Beach, CA, USA, 31 October–3 November 2016; pp. 217–220. [Google Scholar]
- Natrella, M.; Liu, C.P.; Graham, C.; van Dijk, F.; Liu, H.; Renaud, C.C.; Seeds, A.J. Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes. Opt. Express 2016, 24, 11793–11807. [Google Scholar] [CrossRef]
- Sun, K.; Moody, J.; Li, Q.; Bowers, S.M.; Beling, A. High power integrated photonic W-band emitter. IEEE Trans. Microw. Theory Tech. 2011, 59, 978–986. [Google Scholar] [CrossRef]
- Huggard, P.G.; Ellison, B.N.; Shen, P.; Gomes, N.J.; Davies, P.A.; Shillue, W.; Vaccari, A.; Payne, J.M. Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode. Electron. Lett. 2002, 38, 327–328. [Google Scholar] [CrossRef]
- Hirata, A.; Minotani, T.; Nagatsuma, T. A 120-GHz microstrip antenna monolithically integrated with a photodiode on Si. Jpn. J. Appl. Phys. 2002, 41, 1390–1394. [Google Scholar] [CrossRef]
- Rouvalis, E.; Renaud, C.C.; Moodie, D.G.; Robertson, M.J.; Seeds, A.J. Continuous wave terahertz generation from ultra-fast InP-based photodiodes. IEEE Trans. Microw. Theory Tech. 2012, 60, 509–517. [Google Scholar] [CrossRef]
- Hirata, A.; Ishii, H.; Nagatsuma, T. Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters. IEEE Trans. Microw. Theory Tech. 2001, 49, 2157–2162. [Google Scholar] [CrossRef]
- Stohr, A.; Malcoci, A.; Sauerwald, A.; Mayorga, I.C.; Gusten, R.; Jager, D.S. Ultra-wide-band traveling-wave photodetectors for photonic local oscillators. J. Lightwave Technol. 2003, 21, 3062–3070. [Google Scholar] [CrossRef]
- Shi, J.-W.; Wu, Y.-S.; Lin, Y.-S. Near-ballistic uni-traveling carrier photodiode-based V-band optoelectronic mixers with internal up-conversion-gain, wide modulation bandwidth, and very high operation current performance. IEEE Photonics Technol. Lett. 2008, 20, 939–941. [Google Scholar] [CrossRef]
- Hirata, A.; Nagatsuma, T.; Yano, R.; Ito, H.; Furuta, T.; Hirota, Y.; Ishibashi, T.; Matsuo, H.; Ueda, A.; Noguchi, T.; Sekimoto, Y.; Ishiguro, M.; Matsuura, S. Output power measurement of photonic millimeter-wave and sub-millimeter-wave emitter at 100–800 GHz. Electron. Lett. 2002, 38, 798–800. [Google Scholar] [CrossRef]
- Hirata, A.; Harada, M.; Nagatsuma, T. 120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals. J. Lightwave Technol. 2003, 21, 2145–2153. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-S.; Chen, N.-W.; Shi, J.-W. A W-band photonic transmitter/mixer based on high-power near-ballistic uni-traveling-carrier photodiode (NBUTC-PD). IEEE Photonics Technol. Lett. 2008, 20, 1799–1801. [Google Scholar] [CrossRef]
- Shi, J.-W.; Kuo, F.M.; Wu, Y.-S.; Chen, N.-W.; Shih, P.-T.; Lin, C.-T.; Jiang, W.-J.; Wong, E.-Z.; Chen, C.; Chi, S. A W-band photonic transmitter-mixer based on high power near-ballistic uni-traveling-carrier photodiodes for BPSK and QPSK data transmission under bias modulation. IEEE Photonics Technol. Lett. 2009, 20, 1039–1041. [Google Scholar] [CrossRef]
- Chang, H.; Kuo, Y.; Chen, H.; Jones, R.; Barkai, A.; Paniccia, M.J.; Bowers, J.E. Integrated Triplexer on Hybrid Silicon Platform. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010. [Google Scholar]
- Liang, D.; Roelkens, G.; Baets, R.; Bowers, J.E. Hybrid Integrated Platforms for Silicon Photonics. Materials 2010, 3, 1782–1802. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Feng, S.; Poon, A.; Lau, K. High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3801807. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Q.; Norberg, E.; Jacob-Mitos, M.; Chen, Y.; Ramaswamy, A.; Fish, G.; Bowers, J.E.; Campbell, J.C.; Beling, A. Heterogeneously Integrated Waveguide-Coupled Photodiodes on SOI with 12 dBm Output Power at 40 GHz. In Proceedings of the 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015; pp. 1–3, Postdeadline Paper. [Google Scholar]
- Wang, Y.; Wang, Z.; Yu, Q.; Xie, X.; Posavitz, T.; Jacob-Mitos, M.; Ramaswamy, A.; Norberg, E.J.; Fish, G.A.; Beling, A. High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated onto Silicon-on-Insulator Nano-Waveguides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–6. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Sun, K.; Jung, D.; Shang, C.; Liu, A.; Morgan, J.; Zang, J.; Li, Q.; Klamkin, J.; Bowers, J.E.; Beling, A. Low dark current III–V on silicon photodiodes by heteroepitaxy. Opt. Express 2018, 26, 13605–13613. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, V.; Ram, R.J.; Popović, M.; Lin, S.; Moazeni, S.; Wade, M.; Sun, C.; Alloatti, L.; Atabaki, A.; Pavanello, F.; et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes. Opt. Express 2018, 26, 13106–13121. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Y.; Bowers, J.E. Photonic integration with epitaxial III-V on silicon. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 6000412. [Google Scholar] [CrossRef]
- Lee, J.; Cho, S.; Choi, W. An equivalent circuit model for a Ge waveguide photodetector on Si. IEEE Photonics Technol. Lett. 2016, 28, 2435–2438. [Google Scholar] [CrossRef]
- Su, Z.; Hosseini, E.S.; Timurdogan, E.; Sun, J.; Moresco, M.; Leake, G.; Adam, T.N.; Coolbaugh, D.D.; Watts, M.R. Whispering gallery germanium-on-silicon photodetector. Opt. Lett. 2017, 42, 2878–2881. [Google Scholar] [CrossRef] [PubMed]
- Byrd, M.J.; Timurdogan, E.; Su, Z.; Poulton, C.V.; Fahrenkopf, N.M.; Leake, G.; Coolbaugh, D.D.; Watts, M.R. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors. Opt. Lett. 2017, 42, 851–854. [Google Scholar] [CrossRef]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Sinsky, J.H.; Dong, P.; Valicourt, G.; Chen, Y. High-power dual-fed traveling wave photodetector circuits in silicon photonics. Opt. Express 2015, 23, 22857–22866. [Google Scholar] [CrossRef]
- Sun, K.; Costanzo, R.; Tzu, T.; Yu, Q.; Bowers, S.M.; Beling, A. Ge-on-Si Waveguide Photodiode Array for High-Power Applications. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018. Paper MB2.3. [Google Scholar]
- AIM Photonics. Available online: http://www.aimphotonics.com (accessed on 10 February 2019).
- Yang, Z.; Yu, Q.; Zang, J.; Campbell, J.C.; Beling, A. Phase-modulated analog photonic link with a high-power high-linearity photodiode. J. Lightwave Technol. 2018, 36, 3805–3814. [Google Scholar] [CrossRef]
- Li, Z.; Pan, H.; Chen, H.; Beling, A.; Campbell, J.C. High-Saturation-Current Modified Uni-Traveling-Carrier Photodiode with Cliff Layer. IEEE J. Quantum Electron. 2010, 46, 626–632. [Google Scholar] [CrossRef]
- Li, K.; Xie, X.; Zhou, Q.; Beling, A.; Campbell, J.C. High Power 20-GHz Photodiodes with Resonant Microwave Circuits. IEEE Photonics Technol. Lett. 2014, 26, 1303–1306. [Google Scholar] [CrossRef]
- Wang, X.; Duan, N.; Chen, H.; Campbell, J.C. InGaAs–InP Photodiodes with High Responsivity and High Saturation Power. IEEE Photonics Technol. Lett. 2007, 19, 1272–1274. [Google Scholar] [CrossRef]
- Li, N.; Li, X.; Demiguel, S.; Zheng, X.; Campbell, J.C.; Tulchinsky, D.A.; Williams, K.J.; Isshiki, T.D.; Kinsey, G.S.; Sudharsansan, R. High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode. IEEE Photonics Technol. Lett. 2004, 16, 864–866. [Google Scholar] [CrossRef]
- Sakai, K.; Ishimura, E.; Nakaji, M.; Itakura, S.; Hirano, Y.; Aoyagi, T. High-current back-illuminated partially depleted-absorber p-i-n photodiode with depleted nonabsorbing region. IEEE Trans. Microw. Theory Tech. 2010, 58, 3154–3160. [Google Scholar] [CrossRef]
- Rouvalis, E.; Muller, P.; Tromme, D.; Stephan, J.; Steffan, A.G.; Unterborsch, U. A 1×4 MMI-integrated high-power waveguide photodetector. In Proceedings of the 2013 International Conference on Indium Phosphide and Related Materials (IPRM), Kobe, Japan, 19–23 May 2013; pp. 1–2. [Google Scholar]
- Achouche, M.; Magnin, V.; Harari, J.; Lelarge, F.; Derouin, E.; Jany, C.; Carpentier, D.; Blache, F.; Decoster, D. High performance evanescent edge coupled waveguide unitraveling-carrier photodiodes for >40-gb/s optical receivers. IEEE Photonics Technol. Lett. 2004, 16, 584–586. [Google Scholar] [CrossRef]
- Anagnosti, M.; Caillaud, C.; Blache, F.; Jorge, F.; Angelini, P.; Paret, J.F.; Achouche, M. Optimized high speed UTC photodiode for 100 Gbit/s applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3801107. [Google Scholar] [CrossRef]
- Demiguel, S.; Li, N.; Li, X.; Zheng, X.; Kim, J.; Campbell, J.C.; Lu, H.; Anselm, A. Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications. IEEE Photonics Technol. Lett. 2003, 15, 1761–1763. [Google Scholar] [CrossRef]
- Wu, Y.S.; Shi, J.W.; Chiu, P.H.; Lin, W. High-performance dual-step evanescently coupled uni-traveling-carrier photodiodes. IEEE Photonics Technol. Lett. 2007, 19, 1682–1684. [Google Scholar] [CrossRef]
- Zhou, G.; Ebert, W.; Mutschall, S.; Seeger, A.; Runge, P.; Li, Q.; Beling, A. High-power waveguide integrated modified uni-traveling-carrier (UTC) photodiode with 5 dBm RF output power at 120 GHz. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016. Paper Tu2D.3. [Google Scholar]
- Zhou, G.; Runge, P.; Lankes, S.; Seeger, A.; Schell, M. Waveguide integrated pin-photodiode array with high power and high linearity. In Proceedings of the 2015 International Topical Meeting on Microwave Photonics (MWP), Paphos, Cyprus, 26–29 October 2015; pp. 1–4. [Google Scholar]
- Shi, J.; Wu, Y.; Wu, C.; Chiu, P.; Hong, C. High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength. IEEE Photonics Technol. Lett. 2005, 17, 1929–1931. [Google Scholar] [CrossRef]
- Beling, A.; Cross, A.S.; Piels, M.; Peters, J.; Zhou, Q.; Bowers, J.E.; Campbell, J.C. InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation. Opt. Express 2013, 21, 25901–25906. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhou, Q.; Norberg, E.; Jacob-Mitos, M.; Yang, Z.; Chen, Y.; Ramaswamy, A.; Fish, G.; Campbell, J.C.; Beling, A. High-power heterogeneously integrated waveguide-coupled balanced photodiodes on silicon-on-insulator. In Proceedings of the 2015 IEEE Photonics Conference (IPC), Reston, VA, USA, 4–8 October 2015; pp. 468–469. [Google Scholar]
- Hulme, J.; Kennedy, M.J.; Chao, R.; Komljenovic, T.; Shi, J.; Bowers, J.E. Heterogeneously integrated InP based evanescently-coupled high-speed and high-power p-i-n photodiodes on silicon-on-insulator (SOI) substrate. In Proceedings of the 2016 IEEE International Topical Meeting on Microwave Photonics (MWP), Long Beach, CA, USA, 31 October–3 November 2016; pp. 233–236. [Google Scholar]
- Piels, M.; Bowers, J.E. 40 GHz Si/Ge Uni-Traveling Carrier Waveguide Photodiode. J. Lightwave Technol. 2014, 32, 3502–3508. [Google Scholar] [CrossRef]
- Ramaswamy, A.; Piels, M.; Nunoya, N.; Yin, T.; Bowers, J.E. High power silicon-germanium photodiodes for microwave photonic applications. IEEE Trans. Microw. Theory Tech. 2010, 58, 3336–3343. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Beling, A. High-Speed Photodetectors for Microwave Photonics. Appl. Sci. 2019, 9, 623. https://doi.org/10.3390/app9040623
Sun K, Beling A. High-Speed Photodetectors for Microwave Photonics. Applied Sciences. 2019; 9(4):623. https://doi.org/10.3390/app9040623
Chicago/Turabian StyleSun, Keye, and Andreas Beling. 2019. "High-Speed Photodetectors for Microwave Photonics" Applied Sciences 9, no. 4: 623. https://doi.org/10.3390/app9040623
APA StyleSun, K., & Beling, A. (2019). High-Speed Photodetectors for Microwave Photonics. Applied Sciences, 9(4), 623. https://doi.org/10.3390/app9040623