# Effect of In-Shoe Foot Orthosis Contours on Heel Pain Due to Calcaneal Spurs

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## Featured Application

**The proposed method for easily obtaining contoured insoles from the variation of the insole foot area together with the pain pressure threshold could potentially be applied to orthotic shoe designers for reducing pain in calcaneal spur patients.**

## Abstract

## 1. Introduction

^{®}insole sensing system [19], or used capacitance sensor/transducers (the PEDAR

^{®}pressure measurement system) [20].

## 2. Materials and Methods

#### 2.1. Determining the Contour of the Shoe Insole

- (1)
- Evaluate the area 100% A and 0% A using Rhinoceros software.
- (2)
- Generate the xyz-coordinates of 100%_A by using Microsoft Excel which integrated with AutoCAD software as presented in Figure 3b.
- (3)
- Adjust the z-coordinates of 100% A to 75% A; initially specify a reduced percentage of 5% (reduced percentage z-coordinates of 100% A and 0% A are 0% and 100%, respectively) and display the coordinates in AutoCAD to evaluate its area using Rhinoceros software.
- (4)
- If the area is still much greater than 5 mm
^{2}[28] compared with Equation (1), repeat the procedure four times by increasing the percentage of 5% reduction. - (5)
- If the difference of area approaches 5 mm
^{2}, increase the percentage reduction to 1–2%.

_{max}and z

_{min}express the z-coordinates at 100% A (z

_{100%_A}) and the largest and smallest z-coordinates at 100% A, respectively.

#### 2.2. Measuring Pressure in Heel Area

^{3}− 1643.9 V

^{2}+ 1083.5 V − 31.02

## 3. Results

^{2}and averaged 2.09 ± 0.63 kg/cm

^{2}. The result shows that the smallest PMCP occurs at the anterior site, and the PMCP at the medial site was significantly lower than at the lateral site.

## 4. Discussion

^{2}, respectively).

## 5. Conclusions

^{2}and 1.73 kg/cm

^{2}, respectively, which are significantly lower than the average PMCPs (89.0% and 17.1%, respectively), while the average pressures at 75% insole foot area are 0.19 kg/cm

^{2}and 0.69 kg/cm

^{2}, respectively, which are also significantly lower than the average PMCPs (91.1% and 67.0%, respectively). On the other hand, the average pressures at MH for a 50% and 75% insole foot area are 2.59 kg/cm

^{2}and 2.20 kg/cm

^{2}, respectively, which are still greater than the average PMCPs (19.3% and 4.7%, respectively). One hundred percent insole foot area can also be used, but is not recommended—even though the average pressure in all regions and the percentage of insole foot area are smaller than the average PMCP—because it requires large production costs.

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Buchbinder, R. Clinical practice: Plantar fasciitis. N. Engl. J. Med.
**2004**, 350, 2159–2166. [Google Scholar] [CrossRef] [PubMed] - McCarthy, D.J.; Gorecki, G.E. The anatomical basis of inferior calcaneal lesions: A cryomicrotomy study. J. Am. Podiatry Assoc.
**1979**, 69, 527–536. [Google Scholar] [CrossRef] [PubMed] - Bartold, S.J. The Plantar Fascia as a Source of Pain – Biomechanics, Presentation and Treatment. J. Bodyw. Mov. Ther.
**2004**, 8, 214–226. [Google Scholar] [CrossRef] - Barrett, S.L.; O’Malley, R. Plantar Fasciitis and Other Causes of Heel Pain. Am. Fam. Physician
**1999**, 59, 2200–2206. [Google Scholar] [PubMed] - Smith, S.; Tinley, P.; Gilheany, M.; Grills, B. The inferior calcaneal spur-anatomical and histological considerations. Foot
**2007**, 17, 25–31. [Google Scholar] [CrossRef] - Goff, J.D.; Crawford, R. Diagnosis and treatment of plantar fasciitis. Am. Fam.
**2011**, 84, 676–682. [Google Scholar] - Zhou, B.; Zhou, Y.; Tao, X.; Yuan, C.; Tang, K. Classification of calcaneal spurs and their relationship with plantar fasciitis. J. Foot Ankle Surg.
**2015**, 54, 594–600. [Google Scholar] [CrossRef] [PubMed] - Roberts, S. Scott’s Book on Plantar Fasciitis, Heel Spurs, and Heel Pain. Available online: http://heelspurs.com/_intro.html.
- Hyland, M.R.; Gaffney, A.; Cohen, L.; Lichtman, S.W. Randomized control trial of calcaneal taping, sham taping, and plantar fascia stretching for short-term management of plantar heel pain. J. Orthop. Sports Phys. Ther.
**2006**, 36, 364–371. [Google Scholar] [CrossRef] - Thomas, J.L.; Christensen, J.C.; Kravitz, S.R.; Mendicino, R.W.; Schuberth, J.M.; Vanore, J.V.; Weil, L.S., Sr.; Zlotoff, H.J.; Bouché, R.; Baker, J. The Diagnosis and Treatment of Heel Pain: A Clinical Practice Guideline—Revision 2010. J. Foot Ankle Surg.
**2010**, 49, S1–S19. [Google Scholar] [CrossRef] - Kogler, G.; Solomonidis, S.E.; Paul, P.J. Biomechanics of longitudinal arch support mechanics in foot orthoses and their effect on plantar aponeurosis strain. Clin. Biomech.
**1998**, 11, 243–252. [Google Scholar] [CrossRef] - Kogler, G.; Veer, F.; Solomonidis, S.E.; Paul, PJ. The influence of medial and lateral placement of orthotic wedges on loading of the plantar aponeurosis. J. Bone Jt. Surg. Am.
**1999**, 81, 1403–1413. [Google Scholar] [CrossRef] - Ozdemir, H.; Soyuncu, Y.; Ozgorgen, M.; Dabak, K. Effects of changes in heel fat pad thickness and elasticity on heel pain. J. Am. Podiatr. Med. Assoc.
**2004**, 94, 47–52. [Google Scholar] [CrossRef] [PubMed] - Saban, B.; Masharawi, Y. Pain threshold tests in patients with heel pain syndrome. Foot Ankle Int.
**2016**, 37, 730–736. [Google Scholar] [CrossRef] [PubMed] - Cheung, J.; Zhang, M. A 3-dimensional finite element model of the human foot and ankle insole design. Arch. Phys. Med. Rehabil.
**2005**, 86, 353–358. [Google Scholar] [CrossRef] - Chia, J.K.; Suresh, S.; Kuah, A.; Ong, J.L.; Phua, J.M.; Seah, A.L. Comparative trial of the foot pressure patterns between corrective orthotics, formthotics, bone spur and flat insoles in patients with chronic plantar fasciitis. Ann. Acad. Med. Sing.
**2009**, 38, 869–875. [Google Scholar] - Wibowo, D.B.; Harahap, R.; Widodo, A.; Haryadi, G.D.; Ariyanto, M. The effectiveness of raising the heel height of shoes to reduce heel pain in patients with calcaneal spurs. J. Phys. Ther. Sci.
**2017**, 29, 2068–2074. [Google Scholar] [CrossRef] [PubMed] - Tsung, B.Y.S.; Zhang, M.; Fan, Y.B.; Boone, D.A. Quantitative comparison of plantar foot shapes under different weight-bearing conditions. J. Rehabil. Res. Dev.
**2003**, 40, 517–526. [Google Scholar] [CrossRef] [PubMed] - Tsung, B.Y.S.; Zhang, M.; Mak, A.F.T.; Wong, M.W.N. Effectiveness of insoles on plantar pressure redistribution. JRRD
**2004**, 41, 6A. [Google Scholar] [CrossRef] - Bousie, J.A.; Blanch, P.; McPoil, T.G.; Vicenzino, B. Contoured in-shoe foot orthoses increase mid-foot plantar contact area when compared with a flat insert during cycling. J. Sci. Med. Sport
**2013**, 16, 60–64. [Google Scholar] [CrossRef] - Losito, J.M. Impression casting techniques. In Clinical Biomechanics of the Lower Extremity; Valmassy, R., Ed.; Mosby: St. Louis, MO, USA, 1996. [Google Scholar]
- Telfer, S.; Woodburn, J. The use of 3D surface scanning for the measurement and assessment of the human foot. J. Foot Ankle Res.
**2010**, 3, 19. [Google Scholar] [CrossRef] - Stanković, K.; Booth, B.G.; Danckaers, F.; Burg, F.; Vermaelen, P.; Duerinck, S.; Sijbers, J.; Huysmans, T. Three-dimensional quantitative analysis of healthy foot shape: A proof of concept study. J. Foot Ankle Res.
**2018**, 11, 8. [Google Scholar] [CrossRef] [PubMed] - Lee, Y.C.; Lin, G.; Wang, M.J. Comparing 3D foot scanning with conventional measurement methods. J. Foot Ankle Res.
**2014**, 7, 44. [Google Scholar] [CrossRef] - Cavanagh, P.R.; Rodgers, M. The Arch index: A useful measure from footprints. J. Biomech.
**1987**, 20, 547–551. [Google Scholar] [CrossRef] - Wagner Instruments. Wagner FPTX Series Economy Manual Pain Threshold Testers; PAIN TEST™ ALGOMETER: Greenwich, CT, USA; Available online: http://www.wagnerinstruments.com/products/pain-test-algometer/fpk-fpn (accessed on 1 February 2019).
- Wibowo, D.B.; Haryadi, G.D.; Priambodo, A. Estimation of foot pressure from human footprint depths using 3D scanner. AIP Conf. Proc.
**2016**, 1717, 040008. [Google Scholar] [CrossRef] - Robinette, K.; Daanen, H. Precision of the CAESAR scan-extracted measurements. ApplErgon
**2006**, 37, 259–265. [Google Scholar] [CrossRef] - Wibowo, D.B.; Haryadi, G.D.; Widodo, A.; Rahayu, S.P. Estimation of calcaneal loading during standing from human footprint depths using 3D scanner. AIP Conf. Proc.
**2017**, 1788, 030063. [Google Scholar] [CrossRef] - Yung-Hui, L.; Wei-Hsein, H. Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Appl. Ergon.
**2005**, 36, 335–362. [Google Scholar] [CrossRef] [PubMed] - Druga, C.; Serban, I. Study of foot pressure-sole pressure sensor. In Proceedings of the 7th International Conference on Computational Mechanics and Virtual Engineering (COMEC) 2017, Brasov, Rumania, 16–17 November 2017. [Google Scholar]
- Goske, S.; Erdemir, A.; Petre, M.; Budhabhatti, S. Reduction of plantar heel pressure: Insole design using finite element analysis. J. Biomech.
**2006**, 39, 2363–2370. [Google Scholar] [CrossRef] [PubMed] - Boehm, R. The Foot & the Shoe: Measurement & Size; DARCO (Europe) GmbH: Raisting, Germany, 2015. [Google Scholar]
- Maiwald, C.; Grau, S.; Krauss, I.; Mauch, M.; Axmann, D.; Horstmann, T. Reproducibility of plantar pressure distribution data in barefoot running. J. Appl. Biomech.
**2008**, 24, 14–23. [Google Scholar] [CrossRef] - Cavanagh, P.R.; Rodgers, M.; Liboshi, A. Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle Int.
**1987**, 7, 262. [Google Scholar] [CrossRef] - Shimizu, M.; Andrew, P.D. Effect of heel height on the foot in unilateral standing. J. Phys. Ther. Sci.
**1999**, 11, 95–100. [Google Scholar] [CrossRef] - Bonanno, D.R.; Landorf, K.B.; Menz, H.B. Pressure-relieving properties of various shoe inserts in older people with plantar heel pain. Gait Posture
**2011**, 33, 385–389. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**up**) Location and dimension of the spur in the plantar view; (

**down**) Five locations of the pressure pain threshold (PPT) around spur growth.

**Figure 2.**Example outputs of 3D scanning: (

**a**) footprint depth in difference of colors; (

**b**) 3D foam negative impression; (

**c**) footprint 3D positive model.

**Figure 3.**(

**a**) Flowchart evaluation of n% insole foot area; (

**b**) Table of 3D coordinates (x, y, and z axis) generated from AutoCAD with the visualization of the increment of x- and y-axis.

**Figure 6.**Calcaneal loading during standing for the five percentage areas of shoe insole, compared to the PMCP measured using the algometer (mean ± SD).

**Figure 7.**The pressure at the MH, LH and CH for the five percentage areas of shoe insole and each length of spur, as presented in Table 5.

Subject Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Height, cm | 155 | 157 | 151 | 153 | 153 | 172 | 150 | 156 | 146 | 159 | 164 | 163 | 144 |

Weight, kg | 57.2 | 60 | 50 | 52 | 70 | 63.8 | 59 | 68.6 | 55.3 | 84.6 | 62.7 | 72 | 67.6 |

FL, mm | 249 | 266 | 237 | 240 | 252 | 276 | 237 | 251 | 240 | 240 | 270 | 273 | 234 |

FW, mm | 98 | 118 | 106 | 91 | 100 | 108 | 96 | 102 | 94 | 100 | 100 | 99 | 90 |

Shoe size | 40 | 42 | 38 | 38 | 40 | 43 | 38 | 40 | 38 | 39 | 40 | 42 | 37 |

L, mm | 4.5 | 3.0 | 1.5 | 4.0 | 5.0 | 3.0 | 4.0 | 7.0 | 6.0 | 7.0 | 2.0 | 4.0 | 6.0 |

CH, mm | 37.4 | 39.9 | 35.6 | 36.0 | 37.8 | 41.4 | 35.6 | 37.7 | 36.0 | 36.0 | 40.5 | 41.0 | 35.1 |

S, mm | 38.0 | 34.0 | 36.0 | 38.0 | 39.0 | 41.0 | 35.0 | 39.0 | 30.0 | 38.0 | 34.0 | 34.0 | 36.0 |

(CH-S), mm | −0.6 | 5.9 | −0.5 | −2.0 | −1.2 | 0.4 | 0.5 | −1.4 | 6.0 | −2.0 | 6.5 | 7.0 | −0.9 |

Heel Site | Number of Feet | PMCP (kg/cm^{2}) | PMCP Related to the Length of Spur Types (kg/cm^{2}) Mean ± SD (Number of Feet) | ||
---|---|---|---|---|---|

Mean ± SD (Range) | Small | Medium | Large | ||

1 | 1 | 1.32 | 1.32 (1) | - | - |

2 | 5 | 1.63 ± 0.25 (1.24–1.87) | - | 1.24 (1) | 1.73 ± 0.13 (4) |

3 | 2 | 3.13 ± 0.25 (2.95–3.3) | 2.95 (1) | 3.3 (1) | - |

4 | 2 | 2.38 ± 0.37 (2.11–2.64) | - | 2.38 ± 0.37 (2) | - |

5 | 3 | 2.25 ± 0.41 (1.92–2.71) | - | 2.25 ± 0.41 (3) | - |

**Table 3.**The deduction percentage and area of shoe insole result of modification of z-coordinate and calculation using Equation (1) from one of the study subjects.

% Shoe Insole Area | % Deduction | Shoe Insole Area (mm^{2}) | |
---|---|---|---|

From Modification of z-Coordinates | From Equation (1) | ||

100 | 0 | 17,972 | 17,972 |

75 | 16.5 | 17,063 | 17,071 |

50 | 34.5 | 16,169 | 16,170 |

25 | 56 | 15,266 | 15,269 |

0 | 100 | 14,368 | 14,368 |

Percentage Area of Shoe Insole | 0% | 25% | 50% | 75% | 100% |
---|---|---|---|---|---|

Calcaneal region | Comparison to the BW (mean ± SD) | ||||

MH | 10.14 ± 1.46 | 8.93 ± 1.16 | 8.26 ± 1.65 | 7.01 ± 1.09 | 3.64 ± 0.60 |

LH | 7.46 ± 1.28 | 6.70 ± 1.06 | 5.53 ± 0.91 | 2.23 ± 0.52 | 0.93 ± 0.16 |

CH | 1.44 ± 0.20 | 1.05 ± 0.21 | 0.73 ± 0.09 | 0.59 ± 0.09 | 0.24 ± 0.06 |

Calcaneal region | Comparison to all sensors (mean ± SD) | ||||

MH | 53.31 ± 0.82 | 53.60 ± 1.55 | 56.69 ± 1.26 | 71.49 ± 2.36 | 75.47 ± 3.04 |

LH | 39.11 ± 1.01 | 40.11 ± 1.04 | 38.20 ± 0.78 | 22.44 ± 2.55 | 19.44 ± 2.41 |

CH | 7.58 ± 0.18 | 6.29 ± 0.51 | 5.11 ± 0.48 | 6.07 ± 0.20 | 5.09 ± 1.03 |

Spur Length | PMCP (kg/cm ^{2}) | Calcaneal Region | Calcaneal Loading for Each Percentage Area of Shoe Insole (kg/cm^{2}) | ||||
---|---|---|---|---|---|---|---|

0% | 25% | 50% | 75% | 100% | |||

MH | 3.00 ± 0.34 | 2.67 ± 0.22 | 2.37 ± 0.45 | 2.06 ± 0.27 | 1.02 ± 0.10 | ||

Small | 2.14 ± 1.15 | LH | 2.17 ± 0.34 | 1.96 ± 0.27 | 1.61 ± 0.24 | 0.69 ± 0.15 | 0.27 ± 0.04 |

CH | 0.43 ± 0.05 | 0.30 ± 0.06 | 0.22 ± 0.02 | 0.17 ± 0.02 | 0.05 ± 0.00 | ||

MH | 3.11 ± 0.33 | 2.75 ± 0.21 | 2.52 ± 0.43 | 2.15 ± 0.26 | 1.18 ± 0.22 | ||

Medium | 2.29 ± 0.66 | LH | 2.28 ± 0.32 | 2.06 ± 0.26 | 1.70 ± 0.23 | 0.68 ± 0.11 | 0.29 ± 0.04 |

CH | 0.44 ± 0.04 | 0.32 ± 0.06 | 0.23 ± 0.02 | 0.18 ± 0.02 | 0.08 ± 0.01 | ||

MH | 3.35 ± 0.69 | 2.91 ± 0.45 | 2.84 ± 0.91 | 2.34 ± 0.56 | 1.13 ± 0.18 | ||

Large | 1.73 ± 0.13 | LH | 2.52 ± 0.68 | 2.24 ± 0.54 | 1.86 ± 0.48 | 0.71 ± 0.22 | 0.31 ± 0.08 |

CH | 0.47 ± 0.09 | 0.36 ± 0.12 | 0.24 ± 0.03 | 0.20 ± 0.04 | 0.09 ± 0.03 |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wibowo, D.B.; Widodo, A.; Haryadi, G.D.; Caesarendra, W.; Harahap, R. Effect of In-Shoe Foot Orthosis Contours on Heel Pain Due to Calcaneal Spurs. *Appl. Sci.* **2019**, *9*, 495.
https://doi.org/10.3390/app9030495

**AMA Style**

Wibowo DB, Widodo A, Haryadi GD, Caesarendra W, Harahap R. Effect of In-Shoe Foot Orthosis Contours on Heel Pain Due to Calcaneal Spurs. *Applied Sciences*. 2019; 9(3):495.
https://doi.org/10.3390/app9030495

**Chicago/Turabian Style**

Wibowo, Dwi Basuki, Achmad Widodo, Gunawan Dwi Haryadi, Wahyu Caesarendra, and Rudiansyah Harahap. 2019. "Effect of In-Shoe Foot Orthosis Contours on Heel Pain Due to Calcaneal Spurs" *Applied Sciences* 9, no. 3: 495.
https://doi.org/10.3390/app9030495