Improving the Adhesiveness of Cemented Glass Components by DBD Plasma Pre-Treatment at Atmospheric Pressure
Abstract
:1. Introduction
2. Experimental Setup and Procedure
2.1. Sample Preparation
2.2. Plasma Pre-Treatment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dreyfus, M.G.; Bishop, R.E.; Moorhead, J.E. Aplanatic cemented doublet design. J. Opt. Soc. Am. 1960, 50, 375–378. [Google Scholar] [CrossRef]
- Shields, J. Adhesives in instrumentation. J. Phys. E Sci. Instrum. 1972, 5, 109–116. [Google Scholar] [CrossRef]
- Iqbal Khan, M.; MacDonald, J. Cemented doublets - a method for rapid design. Opt. Acta 1982, 29, 807–822. [Google Scholar] [CrossRef]
- Beamonte, J.I. Stability of the spherical aberration up to the fifth order in cemented doublets. J. Opt. A-Pure Appl. Opt. 2000, 2, 161–168. [Google Scholar] [CrossRef]
- Gerhard, C. Optics Manufacturing: Components and Systems, 1st ed.; CRC Taylor & Francis: Boca Raton, FL, USA, 2017; pp. 179–188. [Google Scholar]
- Murata, N.; Nakamura, K. UV-curable adhesives for optical communications. J. Adhes. 1991, 35, 251–267. [Google Scholar] [CrossRef]
- Nagata, N.; Shiroishi, M.; Miyama, Y.; Mitsugi, N.; Miyamoto, N. Evaluation of new UV-curable adhesive material for stable bonding between optical fibers and waveguide devices: Problems in device packaging. Opt. Fiber Technol. 1995, 1, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Carnell, K.H.; Kidger, M.J.; Overill, A.J.; Reader, R.W.; Reavell, F.C.; Welford, W.T.; Wynne, C.G. Some experiments on precision lens centring and mounting. Opt. Acta 1974, 21, 615–629. [Google Scholar] [CrossRef]
- Hopkins, R.E. Some thoughts on lens mounting. Opt. Eng. 1976, 15, 428–430. [Google Scholar] [CrossRef]
- Uddin, M.A.; Chan, H.P.; Lam, K.W.; Chan, Y.C.; Chu, P.L.; Hung, K.C.; Tsun, T.O. Delamination problems of UV-cured adhesive bonded optical fiber in V-groove for photonic packaging. IEEE Photonic. Tech. Lett. 2004, 16, 1113–1115. [Google Scholar] [CrossRef]
- Woods, H.F. Causes for separation in U.V. adhesive bonded optical assemblies. In Proceedings of the SPIE’s 1993 International Symposium on Optics, Imaging, and Instrumentation (Proc. of SPIE 1999 - Adhesives Engineering), San Diego, CA, USA, 11–16 June 1993; Norland, E.A., Liechti, K.M., Eds.; pp. 59–62. [Google Scholar]
- Yoder, P.R.; Vukobratovich, D. Shear stresses in cemented and bonded optics due to temperature changes. In Proceedings of the SPIE 9573 - Optomechanical Engineering, San Diego, CA, USA, 9–13 August 2015; Hatheway, A.E., Ed.; [Google Scholar]
- Brockmann, W.; Geiß, P.L.; Klingen, J.; Schröder, K.B. Adhesive Bonding: Materials, Applications and Technology, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 314–315. [Google Scholar]
- Twymann, F. Prism and Lens Making, 2nd ed.; Adam Hilger: Bristol, UK; New York, NY, USA, 1952; pp. 66–118. [Google Scholar]
- Tamaki, T.; Watanabe, W.; Itoh, K. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm. Opt. Express 2006, 14, 10460–10468. [Google Scholar] [CrossRef]
- Richter, S.; Döring, S.; Tünnermann, A.; Nolte, S. Bonding of glass with femtosecond laser pulses at high repetition rates. Appl. Phys. A 2011, 103, 257–261. [Google Scholar] [CrossRef]
- Hélie, D.; Bégin, M.; Lacroix, F.; Vallée, R. Reinforced direct bonding of optical materials by femtosecond laser welding. Appl. Opt. 2012, 51, 2098–2106. [Google Scholar] [CrossRef] [PubMed]
- Haisma, J.; Spierings, G.A.C.M. Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: Historical review in a broader scope and comparative outlook. Mater. Sci. Eng. R Rep. 2002, 37, 1–60. [Google Scholar] [CrossRef]
- Smith, H.H. Optical-contact bonding. J. Acoust. Soc. Am. 1965, 37, 928–929. [Google Scholar] [CrossRef]
- Greco, V.; Marchesini, F.; Molesini, G. Optical contact and van der Waals interactions: The role of the surface topography in determining the bonding strength of thick glass plates. J. Opt. A-Pure Appl. Opt. 2001, 3, 85–88. [Google Scholar] [CrossRef]
- Sivasankar, S.; Chu, S. Optical bonding using silica nanoparticle sol-gel chemistry. Nano Lett. 2007, 7, 3031–3034. [Google Scholar] [CrossRef]
- Kalkowski, G.; Risse, S.; Rothhardt, C.; Rohde, M.; Eberhardt, R. Optical contacting of low-expansion materials. In Proceedings of the SPIE 8126-Optical Manufacturing and Testing IX, San Diego, CA, USA, 21–25 August 2011. 81261F (7p). [Google Scholar]
- Turner, T.; Casnedi, P. Novel bonding technology improves optical assemblies. EuroPhotonics 2013, 2013, 27–29. [Google Scholar]
- Gerhard, C.; Weihs, T.; Tasche, D.; Brückner, S.; Wieneke, S.; Viöl, W. Atmospheric pressure plasma treatment of fused silica, related surface and near-surface effects and applications. Plasma Chem. Plasma Process. 2013, 33, 895–905. [Google Scholar] [CrossRef]
- Gerhard, C.; Tasche, D.; Uteza, O.; Hermann, J. Investigation of nonuniform surface properties of classically-manufactured fused silica windows. Appl. Opt. 2017, 56, 7427–7434. [Google Scholar] [CrossRef]
- Hunt, P.G. Optical cements - a laboratory assessment. Opt. Acta 1967, 14, 401–435. [Google Scholar] [CrossRef]
- Liu, T.; Hong, L.; Hottel, T.; Dong, X.; Yu, Q.; Chen, M. Non-thermal plasma enhanced bonding of resin cement to zirconia ceramic. Clin. Plasma Med. 2016, 4, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhard, C.; Tasche, D.; Munser, N.; Dyck, H. Increase in nanosecond laser-induced damage threshold of sapphire windows by means of direct dielectric barrier discharge plasma treatment. Opt. Lett. 2017, 42, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, C.; Stappenbeck, M. Impact of the polishing suspension concentration on laser damage of classically-manufactured and plasma post-processed zinc crown glass surfaces. Appl. Sci. 2018, 8, 1556. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Okubo, M.; Imai, N.; Mori, Y. Improvement on hydrophilic and hydrophobic properties of glass surface treated by nonthermal plasma induced by silent corona discharge. Plasma Chem. Plasma Process. 2004, 24, 1–12. [Google Scholar] [CrossRef]
- Cheruthazhekatt, S.; Černák, M.; Slavíček, P.; Havel, J. Gas plasmas and plasma modified materials in medicine. J. Appl. Biomed. 2010, 8, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Bellmann, M.; Gerhard, C.; Haese, C.; Wieneke, S.; Viöl, W. DBD plasma improved spot repair of automotive polymer surfaces. Surf. Eng. 2012, 28, 754–758. [Google Scholar] [CrossRef]
- Jacobssen, R.; Kruse, B. Measurement of adhesion of thin evaporated films on glass substrates by means of the direct pull method. Thin Solid Films 1973, 15, 71–77. [Google Scholar] [CrossRef]
- Gerhard, C.; Roux, S.; Brückner, S.; Wieneke, S.; Viöl, W. Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass. Appl. Opt. 2012, 51, 3847–3852. [Google Scholar] [CrossRef]
- Gerhard, C.; Weihs, T.; Luca, A.; Wieneke, S.; Viöl, W. Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13081. [Google Scholar] [CrossRef] [Green Version]
- Gredner, A.; Gerhard, C.; Wieneke, S.; Schmidt, K.; Viöl, W. Increase in generation of poly-crystalline silicon by atmospheric pressure plasma-assisted excimer laser annealing. J. Mater. Sci. Eng. B 2013, 3, 346–351. [Google Scholar]
- Helmke, A.; Hoffmeister, D.; Mertens, N.; Emmert, S.; Schuette, J.; Viöl, W. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New, J. Phys. 2009, 11, 115025. [Google Scholar] [CrossRef]
- Gerhard, C.; ten Bosch, L. Plasma jet cleaning of optics—Cleaning of silver-coated mirrors by means of atmospheric pressure plasma jets. Vakuum in Forschung und Praxis 2018, 30, 32–35. [Google Scholar] [CrossRef]
- Homola, T.; Matoušek, J.; Kormunda, M.; Wu, L.Y.L.; Černák, M. Plasma treatment of glass surfaces using diffuse coplanar surface barrier discharge in ambient air. Plasma Chem. Plasma, Process. 2013, 33, 881–894. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Kaelble, D.H. Dispersion-polar surface tension properties of organic solids. J. Adhesion 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Shun’ko, E.V.; Belkin, V.S. Cleaning properties of atomic oxygen excited to metastable state 2s22p4(1S0). J. Appl. Phys. 2007, 102, 083304. [Google Scholar] [CrossRef]
- Iwasaki, M.; Inui, H.; Matsudaira, Y.; Kano, H.; Yoshida, N.; Ito, M.; Hori, M. Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning. Appl. Phys. Lett. 2008, 92, 081503. [Google Scholar] [CrossRef]
- Iwasaki, M.; Matsudaira, Y.; Takeda, K.; Ito, M.; Miyamoto, E.; Yara, T.; Uehara, T.; Hori, M. Roles of oxidizing species in a nonequilibrium atmospheric-pressure pulsed remote O2/N2 plasma glass cleaning process. J. Appl. Phys. 2008, 103, 023303. [Google Scholar] [CrossRef]
- Buček, A.; Homola, T.; Aranyosiová, M.; Velič, D.; Plecenik, T.; Havel, J.; Sťahel, P.; Zahoranová, A. Atmospheric pressure nonequilibrium plasma treatment of glass surface. Chem. Listy 2008, 102, S1459–S1462. [Google Scholar]
- Hoffmeister, J.; Brückner, S.; Gerhard, C.; Wieneke, S.; Viöl, W. Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams. Plasma Sources Sci. Technol. 2014, 23, 064008. [Google Scholar] [CrossRef]
- Bogaerts, A.; Gijbels, R. Comparison of argon and neon as discharge gases in a direct-current glow discharge a mathematical simulation. Spectrochim. Acta B 1997, 52, 553–565. [Google Scholar] [CrossRef]
- Magyar, J.T. History of and potential for optical bonding agents in the visible. In Proceedings of the SPIE 1535 - Passive Materials for Optical Elements, San Diego, CA, USA, 21 July 1991; Wilkerson, G.W., Ed.; pp. 55–58. [Google Scholar]
Sample Denomination | Sample Preparation |
---|---|
No ageing | Storing at ambient temperature for 48 h |
Tempering | Storing at ambient temperature for 48 h, then: → tempering at a temperature of 60 °C for 1 h → removal from oven → cooling down to ambient temperature (procedure was repeated 5 times in total) |
Water bath | Storing at ambient temperature for 48 h, then: → placing in a water bath at room temperature → heating of water up to 65 °C → cooling down to room temperature → removal from water bath (procedure was repeated 5 times in total) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerhard, C.; Mielke, G.; Brückner, S.; Wermann, O. Improving the Adhesiveness of Cemented Glass Components by DBD Plasma Pre-Treatment at Atmospheric Pressure. Appl. Sci. 2019, 9, 5511. https://doi.org/10.3390/app9245511
Gerhard C, Mielke G, Brückner S, Wermann O. Improving the Adhesiveness of Cemented Glass Components by DBD Plasma Pre-Treatment at Atmospheric Pressure. Applied Sciences. 2019; 9(24):5511. https://doi.org/10.3390/app9245511
Chicago/Turabian StyleGerhard, Christoph, Gerrit Mielke, Stephan Brückner, and Olaf Wermann. 2019. "Improving the Adhesiveness of Cemented Glass Components by DBD Plasma Pre-Treatment at Atmospheric Pressure" Applied Sciences 9, no. 24: 5511. https://doi.org/10.3390/app9245511
APA StyleGerhard, C., Mielke, G., Brückner, S., & Wermann, O. (2019). Improving the Adhesiveness of Cemented Glass Components by DBD Plasma Pre-Treatment at Atmospheric Pressure. Applied Sciences, 9(24), 5511. https://doi.org/10.3390/app9245511