Implementation of Integrated VCSEL-Based Optical Feedback Interferometry Microfluidic Sensor System with Polymer Microoptics
Abstract
:1. Introduction
2. Device Fabrication
2.1. Fabrication of the Collimated VCSEL on PCB
2.2. Fabrication of the Microfluidic Channel with Integrated Focusing Microlens
3. Microfluidic Flowmetry Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gravesen, P.; Branebjerg, J.; Jensen, O.S. Microfluidics-a review. J. Mioromech. Microeng 1993, 3, 16–82. [Google Scholar] [CrossRef]
- Weigl, B.H.; Bardell, R.L.; Cabrera, C.R. Lab-on-a-chip for drug development. Adv. Drug Deliv. Rev. 2003, 55, 349–377. [Google Scholar] [CrossRef]
- Nilsson, J.; Evander, M.; Hammarström, B.; Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta. 2009, 649, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Akasaka, Y.; Maeda, M. Size measurements of droplets and bubbles by advanced interferometric laser imaging technique. Meas. Sci. Technol. 2002, 13, 308–316. [Google Scholar] [CrossRef]
- Sarrazin, F.; Loubière, K.; Prat, L.; Gourdon, C.; Bonometti, T.; Magnaudet, J. Experimental and numerical study of droplets hydrodynamics in MicroChannel. AIChE J. 2006, 52, 4061–4070. [Google Scholar] [CrossRef]
- Vennemann, P.; Lindken, R.; Westerweel, J. In vivo whole-field blood velocity measurement techniques. Exp. Fluids. 2007, 42, 495–511. [Google Scholar] [CrossRef] [Green Version]
- Draijer, M.; Hondebrink, E.; Leeuwen, T.; Steenbergen, W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med. Sci. 2009, 24, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhou, J.; Wang, C.; Chen, Y.; Lu, L. Temperature measurement of the Laser Cavity Based on Multi-longitudinal Mode Laser Self-Mixing Effect. IEEE Sens. J. 2019, 19, 4386–4392. [Google Scholar] [CrossRef]
- Usman, M.; Zabit, U.; Bernal, O.D.; Raja, G.; Bosch, T. Detection of Multimodal Fringes for Self-Mixing-Based Vibration Measurement. IEEE Trans. Instrum. Meas. 2019, 69, 1–10. [Google Scholar] [CrossRef]
- Wu, J.F.; Shu, F.F. Quadrature detection for self-mixing interferometry. Opt. Lett. 2018, 43, 2154–2156. [Google Scholar] [CrossRef]
- Xu, J.; Huang, L.; Yin, S.; Gao, B.; Chen, P. All-fiber self-mixing interferometer for displacement measurement based on the quadrature demodulation technique. Opt. Rev. 2018, 25, 40–45. [Google Scholar] [CrossRef]
- Keeley, J.; Dean, P.; Valavanis, A.; Bertling, K.; Lim, Y.L.; Alhathlool, R.; Taimre, T.; Li, L.H.; Indjin, D.; Rakić, A.D.; et al. Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser. Opt. Lett. 2015, 40, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Mitsuhashi, Y.; Shimada, J.; Mitsutsuka, S. Voltage change across the self-coupled semiconductor laser. IEEE J. Quantum Electron. 1981, 17, 1216–1225. [Google Scholar] [CrossRef]
- Perchoux, J.; Quotb, A.; Atashkhooei, R.; Azcona, F.; Ramírez-Miquet, E.E.; Bernal, O.; Jha, A.; Luna-Arriaga, A.; Yanez, C.; Caum, J.; et al. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications. Sensors 2016, 16, 694. [Google Scholar] [CrossRef]
- Campagnolo, L.; Nikolic, M.; Perchoux, J.; Lim, Y.L.; Bertling, K.; Loubie`re, K.; Prat, L.; Rakic, A.D.; Bosch, T. Flow profile measurement in microchannel using the optical feedback interferometry sensing technique. Microfluid. Nanofluid. 2013, 14, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Ramrez-Miquet, E.E.; Perchoux, J.; Loubière, K.; Tronche, C.; Prat, L.; Sotolongo-Costa, O. Optical feedback interferometry for velocity measurement of parallel liquid-liquid flows in a microchannel. Sensors 2016, 16, 1233. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Perchoux, J.; Campagnolo, L.; Camps, T.; Atashkhooei, R.; Bardinal, V. Optical feedback interferometry for microscale-flow sensing study: Numerical simulation and experimental validation. Opt. Express 2016, 24, 23849–23861. [Google Scholar] [CrossRef]
- Nikolic, M.; Hicks, E.; Lim, Y.L.; Bertling, K.; Rakic, A.D. Self-mixing laser Doppler flow sensor: An optofluidic implementation. Appl. Opt. 2013, 52, 8128–8133. [Google Scholar] [CrossRef]
- Levallois, C.; Bardinal, V.; Vergnenègre, C.; Leïchlé, T.; Camps, T.; Daran, E.; Doucet, J.B. VCSEL Collimation Using Self-Aligned Integrated Polymer Microlenses. In Proceedings of the SPIE, Strasbourg, France, 14 May 2008; p. 6992. [Google Scholar]
- Jacot-Descombes, L.; Gullo, M.R.; Cadarso, V.J.; Brugger, J. Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing. J. Micromech. Microeng. 2012, 22, 074012. [Google Scholar] [CrossRef]
- Chen, F.; Lu, J.; Huang, W. Using Ink-Jet Printing and Coffee ring effect to fabricate refractive microlens arrays. IEEE Photonics Technol. Lett. 2019, 21, 648–650. [Google Scholar] [CrossRef]
- Kim, J.Y.; Brauer, N.B.; Fakhfouri, V.; Boiko, D.L.; Charbon, E.; Grutzner, G.; Brugger, J. Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique. Opt. Mater. Express 2011, 1, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Tien, C.H.; Hung, C.H.; Yu, T.H. Microlens arrays by direct-writing inkjet print for LCD backlighting applications. IEEE OSA J. Disp. Technol. 2009, 5, 147–151. [Google Scholar] [CrossRef]
- Bardinal, V.; Reig, B.; Camps, T.; Levallois, C.; Daran, E.; Vergnenègre, C.; Leïchlé, T.; Almuneau, G.; Doucet, J.B. Spotted Custom Lenses to Tailor the Divergence of Vertical-Cavity Surface-Emitting Lasers. IEEE Photonics Technol. Lett. 2010, 22, 1592–1594. [Google Scholar] [CrossRef]
- Chen, W.C.; Wu, T.J.; Wu, W.J.; Su, G.D. Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement. J. Micromech. Microeng. 2013, 23, 065008. [Google Scholar] [CrossRef]
- Abada, S.; Salvi, L.; Courson, R.; Daran, E.; Reig, B.; Doucet, J.B.; Camps, T.; Bardinal, V. Comparative study of soft thermal printing and lamination of dry thick photoresist films for the uniform fabrication of polymer MOEMS on small-sized samples. J. Micromech. Microeng. 2017, 27, 055018. [Google Scholar] [CrossRef]
- Ansbæk, T.; Nielsen, C.H.; Larsen, N.B.; Dohn, S.; Boisen, A.; Chung, I.S.; Larsson, D.; Yvind, K. Polymer-Coated Vertical-Cavity Surface-Emitting Laser Diode Vapor Sensor. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 23 January 2010; Volume 7615. [Google Scholar]
- Roumy, J.; Perchoux, J.; Lim, Y.L.; Taimre, T.; Rakić, A.D.; Bosch, T. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer. Appl. Opt. 2015, 54, 312–318. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, Q.; Doucet, J.-B.; Calmon, P.-F.; Mesnilgrente, F.; Reig, B.; Tronche, C.; Camps, T.; Perchoux, J.; Bardinal, V. Implementation of Integrated VCSEL-Based Optical Feedback Interferometry Microfluidic Sensor System with Polymer Microoptics. Appl. Sci. 2019, 9, 5484. https://doi.org/10.3390/app9245484
Zhao Y, Li Q, Doucet J-B, Calmon P-F, Mesnilgrente F, Reig B, Tronche C, Camps T, Perchoux J, Bardinal V. Implementation of Integrated VCSEL-Based Optical Feedback Interferometry Microfluidic Sensor System with Polymer Microoptics. Applied Sciences. 2019; 9(24):5484. https://doi.org/10.3390/app9245484
Chicago/Turabian StyleZhao, Yu, Qingyue Li, Jean-Baptiste Doucet, Pierre-François Calmon, Fabien Mesnilgrente, Benjamin Reig, Clément Tronche, Thierry Camps, Julien Perchoux, and Véronique Bardinal. 2019. "Implementation of Integrated VCSEL-Based Optical Feedback Interferometry Microfluidic Sensor System with Polymer Microoptics" Applied Sciences 9, no. 24: 5484. https://doi.org/10.3390/app9245484
APA StyleZhao, Y., Li, Q., Doucet, J.-B., Calmon, P.-F., Mesnilgrente, F., Reig, B., Tronche, C., Camps, T., Perchoux, J., & Bardinal, V. (2019). Implementation of Integrated VCSEL-Based Optical Feedback Interferometry Microfluidic Sensor System with Polymer Microoptics. Applied Sciences, 9(24), 5484. https://doi.org/10.3390/app9245484