Electrically Small Water-Based Hemispherical Dielectric Resonator Antenna
Abstract
:1. Introduction
2. Configuration
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix B.1. Scattering Analysis of Water Sphere
Appendix B.2. Electric Dipole Antenna for 300 MHz
Appendix B.3. Sensitivity and Tunability
References
- Chu, L.J. Physical limitations of omnidirectional antennas. J. Appl. Phys. 1948, 19, 1163–1175. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory, 3rd ed.; Wiley: New York, NY, USA, 2005; Volume 64–69, pp. 637–641. [Google Scholar]
- Yaghjian, A.D.; Best, S.R. Impedance, bandwidth, and Q of antennas. IEEE Trans. Antennas Propag. 2005, 53, 1298–1324. [Google Scholar] [CrossRef]
- Thal, H.L. New radiation Q limits for spherical wire antennas. IEEE Trans. Antennas Propag. 2006, 44, 2757–2763. [Google Scholar] [CrossRef]
- Best, S.R. The radiation properties of electrically small folded spherical helix antennas. IEEE Trans. Antennas Propag. 2004, 52, 953–960. [Google Scholar] [CrossRef]
- Best, S.R. Low Q electrically small linear and elliptically polarized spherical dipole antennas. IEEE Trans. Antennas Propag. 2005, 53, 1047–1053. [Google Scholar] [CrossRef]
- Erentok, A.; Kim, O.S.; Arslanagić, S. Cylindrical metamaterial-based subwavelength antenna. Microw. Opt. Technol. Lett. 2009, 51, 1496–1500. [Google Scholar] [CrossRef]
- Ziolkowski, R.W.; Erentok, A. Metamaterial-based efficient electrically small antennas. IEEE Trans. Antennas Propag. 2006, 54, 2113–2130. [Google Scholar] [CrossRef]
- Erentok, A.; Ziolkowski, R.W. Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antennas Propag. 2008, 56, 691–707. [Google Scholar] [CrossRef]
- Petosa, A.; Ittipiboon, A. Dielectric Resonator Antennas: A Historical Review and the Current State of the Art. IEEE Antenn. Propag. Mag. 2010, 52, 91–116. [Google Scholar] [CrossRef]
- Kingsley, S.P.; O’Keefe, S.G. Beam steering and monopulse processing of probe-fed dielectric resonator antennas. Proc. IEEE Radar Sonar Navig. 1999, 146, 121–125. [Google Scholar] [CrossRef]
- Ellison, W. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C. J. Phys. Chem. Ref. Data 2007, 36, 1–18. [Google Scholar] [CrossRef]
- O’Keefe, S.G.; Kingsley, S.P. Tunability of liquid dielectric resonator antennas. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 533–536. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, H.; Xin, H. Liquid-based dielectric resonator antenna and its application for measuring liquid real permittivities. IET Microw. Antennas Propag. 2014, 8, 255–262. [Google Scholar] [CrossRef]
- Mobashsher, A.T.; Abbosh, A. Reconfigurable water-substrate based antennas with temperature control. Appl. Phys. Lett. 2017, 110, 253503. [Google Scholar] [CrossRef]
- Li, Y.; Luk, K.M. A water dense dielectric patch antenna. IEEE Access 2015, 3, 274–280. [Google Scholar] [CrossRef]
- Sun, J.; Luk, K.M. A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns. IEEE Trans. Antennas Propag. 2017, 65, 4478–4485. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C. Dual-band directional/omni-directional liquid dielectric resonator antenna designs using characteristic modes. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 848–849. [Google Scholar]
- Xing, L.; Huang, Y.; Xu, Q.; Aljaafreh, S. Wideband, hybrid rectangular water antenna for DVB-H applications. Microw. Opt. Technol. Lett. 2015, 59, 2160–2164. [Google Scholar] [CrossRef]
- Fayad, H.; Record, P. Broadband liquid antenna. Electron. Lett. 2006, 42, 133–134. [Google Scholar] [CrossRef]
- Xing, L.; Huang, Y.; Shen, Y.; Al Ja’afreh, S.; Xu, Q.; Alrawashdeh, R. Further investigation on water antennas. IET Microw. Antennas Propag. 2015, 9, 735–741. [Google Scholar] [CrossRef]
- Xing, L.; Meng, X.; Yang, L.; Xu, B.; Pan, Y. A wideband water antenna for WiFi applications. In Proceedings of the International Workshop on Antenna Technology (iWAT), Nanjing, China, 5–7 March 2018; pp. 1–3. [Google Scholar]
- Andryieuski, A.; Kuznetsova, S.M.; Zhukovsky, S.V.; Kivshar, Y.S.; Lavrinenko, A.V. Water: Promising opportunities for tunable all—Dielectric electromagnetic metamaterials. Sci. Rep. 2015, 5, 13535. [Google Scholar] [CrossRef]
- Gorlach, M.A.; Song, M.; Slobozhanyuk, A.P.; Bogdanov, A.A.; Belov, P. Topological transition in coated wire medium. Phys. Status Solidi RRL 2016, 10, 900–904. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, D.; Wu, S.; Li, L.; Cao, K.; Huang, K. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution. Sci. Rep. 2017, 7, 3190. [Google Scholar] [CrossRef]
- Jacobsen, R.E.; Lavrinenko, A.V.; Arslanagić, S. Water-Based Metasurfaces for Effective Switching of Microwaves. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 571–574. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Ju, S.; Park, S.Y.; Kim, Y.J.; Bong, J.; Lim, T.; Kim, K.W.; Rhee, J.Y.; Lee, Y.P. Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep. 2015, 5, 14018. [Google Scholar] [CrossRef]
- COMSOL Multiphysics 5.3. Available online: https://www.comsol.com/ (accessed on 4 October 2019).
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles, 1st ed.; Wiley: Weinheim, Germany, 1998; pp. 82–129. [Google Scholar]
- Jacobsen, R.E.; Arslanagić, S.; Lavrinenko, A.V. Fundamental properties of Mie resonances in water spheres. In Proceedings of the URSI International Symposium on Electromagnetic Theory (EMTS), San Diego, CA, USA, 27–31 May 2019. [Google Scholar]
- Boccard, J.-M.; Aftab, T.; Hoppe, J.; Yousaf, A.; Hütter, R.; Reindl, L.M. High-resolution, far-field, and passive temperature sensing up to 700 °C using an isolated ZST microwave dielectric resonator. IEEE Sens. J. 2016, 16, 715–722. [Google Scholar] [CrossRef]
- Cheng, H.; Ebadi, S.; Gong, X. A low-profile wireless passive temperature sensor using resonator/antenna integration up to 1000 °C. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 369–372. [Google Scholar]
- Yao, J.; Tchafa, F.M.; Jain, A.; Tjuatja, S.; Huang, H. Far-field interrogation of microstrip patch antenna for temperature sensing without electronics. IEEE Sens. J. 2016, 16, 7053–7060. [Google Scholar] [CrossRef]
Parameter | 300 MHz | 1000 MHz | ||
---|---|---|---|---|
Magnetic Dipole | Electric Dipole | Magnetic Dipole | Electric Dipole | |
(mm) | 55.18 | 78.53 | 16.56 | 22.5 |
(mm) | 43.6 | 16 | 15.4 | 7.9 |
(mm) | 7 | 0 | 2.4 | 0 |
(MHz) | 300 | 298 | 1000 | 1010 |
(dBi) | 0.16 | –3.1 | –4.3 | –8.2 |
29.5% | 15.6% | 9.1% | 4.8% | |
29.6% | 17% | 9.5% | 4.8% | |
(dB) | –24.1 | –10.9 | –13.7 | –19.1 |
(Ω) | 43 − j0.7 | 28 − j6.7 | 32.1 − j0.9 | 40 + j3.5 |
(rad) | 0.35 | 0.46 | 0.35 | 0.48 |
7.81% | 2.85% | 24% | 11.4% | |
1.06 | 22.4 | 1.10 | 21.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobsen, R.E.; Lavrinenko, A.V.; Arslanagić, S. Electrically Small Water-Based Hemispherical Dielectric Resonator Antenna. Appl. Sci. 2019, 9, 4848. https://doi.org/10.3390/app9224848
Jacobsen RE, Lavrinenko AV, Arslanagić S. Electrically Small Water-Based Hemispherical Dielectric Resonator Antenna. Applied Sciences. 2019; 9(22):4848. https://doi.org/10.3390/app9224848
Chicago/Turabian StyleJacobsen, Rasmus E., Andrei V. Lavrinenko, and Samel Arslanagić. 2019. "Electrically Small Water-Based Hemispherical Dielectric Resonator Antenna" Applied Sciences 9, no. 22: 4848. https://doi.org/10.3390/app9224848
APA StyleJacobsen, R. E., Lavrinenko, A. V., & Arslanagić, S. (2019). Electrically Small Water-Based Hemispherical Dielectric Resonator Antenna. Applied Sciences, 9(22), 4848. https://doi.org/10.3390/app9224848