Detection of Emotion Using Multi-Block Deep Learning in a Self-Management Interview App
Abstract
:1. Introduction
2. Related Research
2.1. Facial Recognition-Based Application Services
2.2. Technology Using Facial Recognition
3. Detection of Emotions Using Multi-Block Deep Learning in Self-Management Interviews
3.1. Image Multi-Block Process for Face Main Point Extraction
- E: final strong classifier,
- e: weak classifier,
- a: weighted of weak classifier,
- t: iteration round (1,2,…,T).
3.2. Multi-Block Selection and Extraction of Main Area Features
3.3. Face Detection Using the Multi-Block Deep Learning Process
4. Mobile Service for Real-Time Interview Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, H. The effectiveness of labor market policies on youth employment. Korean Public Adm. Rev. 2017, 51, 325–358. [Google Scholar] [CrossRef]
- Na, E.M. The Identity of the Employment-oriented Genre and the Design of Self-introduction writing and interview. Korean J. Lit. Res. 2018, 9, 131–159. [Google Scholar]
- Park, J.H.; Lee, K.J.; Lee, S.W. The Effects of Local Industrial Structures on the Probability of Youth Employment. J. Korean Reg. Dev. Assoc. 2018, 30, 133–159. [Google Scholar]
- Choi, C.S. Effects of Position Interdependency and Competitiveness on Communication Strategy Selection in Groupdiscussion Employment Interviews. J. Commun. Res. 2019, 56, 330–371. [Google Scholar]
- Ran, H.; Xiang, W.; Zhenan, S.; Tieniu, T. Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1761–1773. [Google Scholar]
- Zhou, L.; Li, W.; Du, Y.; Lei, B.; Liang, S. Adaptive illumination-invariant face recognition via local nonlinear multi-layer contrast feature. J. Vis. Commun. Image Represent. 2019, 64, 102641. [Google Scholar] [CrossRef]
- Cai, Y.; Lei, Y.; Yang, M.; You, Z.; Shan, S. A fast and robust 3D face recognition approach based on deeply learned face representation. Neurocomputing 2019, 363, 375–397. [Google Scholar] [CrossRef]
- Lia, C.; Huang, Y.; Yu, X. Dependence Structure of Gabor Wavelets based on Copula for Face Recognition. Expert Syst. Appl. 2019, 137, 453–470. [Google Scholar] [CrossRef]
- Shakeel, M.S.; Lam, K.-M.; Lai, S.-C. Learning sparse discriminant low-rank features for low-resolution face recognition. J. Vis. Commun. Image Represent. 2019, 63, 102590. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, Q. Facial Landmark Detection: A Literature Survey. Int. J. Comput. Vis. 2019, 127, 115–142. [Google Scholar] [CrossRef]
- Corneanu, C.A.; Simon, M.O.; Cohn, J.F.; Guerrero, S.E.; Oliu, M.; Escalera, S. Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1548–1568. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Sameem, M.S.; Naqvi, N.; Kanwal, S.; Ye, Z. A Deep Learning Approach for Face Recognition based on Angularly Discriminative Features. Pattern Recognit. Lett. 2019, 128, 414–419. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, N. A Survey on Deep Learning based Face Recognition. Comput. Vis. Image Underst. 2019, 189, 102805. [Google Scholar] [CrossRef]
- Elmahmudi, A.; Hassan, U. Deep Face Recognition using Imperfect Facial Data. Future Gener. Comput. Syst. 2019, 99, 213–225. [Google Scholar] [CrossRef]
- Mayya, V.; Pai, R.M.; Pai, M.M. Automatic Facial Expression Recognition Using DCNN. Procedia Comput. Sci. 2016, 93, 453–461. [Google Scholar] [CrossRef]
- Chung, K.; Park, R.C. Cloud based U-healthcare Network with QoS Guarantee for Mobile Health Service. Clust. Comput. 2019, 22, 2001–2015. [Google Scholar] [CrossRef]
- Affectiva. Available online: https://www.affectiva.com/ (accessed on 9 October 2019).
- Chung, K.; Park, R.C. Chatbot-based heathcare service with a knowledge base for cloud computing. Clust. Comput. 2019, 22, 1925–1937. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Yang, J.; Zhang, D. A Survey of Dictionary Learning Algorithms for Face Recognition. IEEE Access 2017, 5, 8502–8514. [Google Scholar] [CrossRef]
- Fu, S.; He, H.; Hou, Z.G. Learning Race from Face: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2483–2509. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Park, R.C. PHR Open Platform based Smart Health Service using Distributed Object Group Framework. Clust. Comput. 2016, 19, 505–517. [Google Scholar] [CrossRef]
- Gong, D.; Li, Z.; Huang, W.; Li, X.; Tao, D. Heterogeneous Face Recognition: A Common Encoding Feature Discriminant Approach. IEEE Trans. Image Process. 2017, 26, 2079–2089. [Google Scholar] [CrossRef] [PubMed]
- Violante, M.G.; Marcolin, F.; Vezzetti, E.; Ulrich, L.; Billia, G.; Di Grazia, L. 3D Facial Expression Recognition for Defining Users’ Inner Requirements-An Emotional Design Case Study. Appl. Sci. 2019, 9, 2218. [Google Scholar] [CrossRef]
- Wang, J.; Yin, L.; Wei, X.; Sun, Y. 3D facial expression recognition based on primitive surface feature distribution. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1399–1406. [Google Scholar]
- Zhou, S.; Xiao, S. 3D face recognition: A survey. Hum. Cent. Comput. Inf. Sci. 2018, 8, 35. [Google Scholar] [CrossRef]
- Yin, L.; Wei, X.; Sun, Y.; Wang, J.; Rosato, M.J. A 3D facial expression database for facial behavior research. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, Southampton, UK, 10–12 April 2006; pp. 211–216. [Google Scholar]
- Kim, J.C.; Chung, K. Prediction model of user physical activity using data characteristics-based long short-term memory recurrent neural networks. Ksii Trans. Internet Inf. Syst. 2019, 13, 2060–2077. [Google Scholar]
- Kim, J.C.; Chung, K. Associative feature information extraction using text mining from health big data. Wirel. Pers. Commun. 2019, 105, 691–707. [Google Scholar] [CrossRef]
- Yoo, H.; Chung, K. Mining-based lifecare recommendation using peer-to-peer dataset and adaptive decision feedback. Peer-to-Peer Netw. Appl. 2018, 11, 1309–1320. [Google Scholar] [CrossRef]
- Gao, W.; Cao, B.; Shan, S.; Chen, X.; Zhou, D.; Zhang, X.; Zhao, D. The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. IEEE Trans. Syst. Man Cybern. 2008, 38, 149–161. [Google Scholar]
- Chung, K.; Yoo, H.; Choe, D.; Jung, H. Blockchain network based topic mining process for cognitive manufacturing. Wirel. Pers. Commun. 2019, 105, 583–597. [Google Scholar] [CrossRef]
- Yoo, H.; Chung, K. Heart rate variability based stress index service model using bio-sensor. Clust. Comput. 2018, 21, 1139–1149. [Google Scholar] [CrossRef]
- Song, C.W.; Jung, H.; Chung, K. Development of a medical big-data mining process using topic modeling. Clust. Comput. 2019, 22, 1949–1958. [Google Scholar] [CrossRef]
- Baek, J.W.; Kim, J.C.; Chun, J.; Chung, K. Hybrid clustering based health decision-making for improving dietary habits. Technol. Health Care 2019, 27, 459–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Yingzi, T. Detection of Cabinet in Equipment Floor based on AlexNet and SSD Model. J. Eng. 2019, 2019, 605–608. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.H.; Chung, K.; Park, R.C. Detection of Emotion Using Multi-Block Deep Learning in a Self-Management Interview App. Appl. Sci. 2019, 9, 4830. https://doi.org/10.3390/app9224830
Shin DH, Chung K, Park RC. Detection of Emotion Using Multi-Block Deep Learning in a Self-Management Interview App. Applied Sciences. 2019; 9(22):4830. https://doi.org/10.3390/app9224830
Chicago/Turabian StyleShin, Dong Hoon, Kyungyong Chung, and Roy C. Park. 2019. "Detection of Emotion Using Multi-Block Deep Learning in a Self-Management Interview App" Applied Sciences 9, no. 22: 4830. https://doi.org/10.3390/app9224830
APA StyleShin, D. H., Chung, K., & Park, R. C. (2019). Detection of Emotion Using Multi-Block Deep Learning in a Self-Management Interview App. Applied Sciences, 9(22), 4830. https://doi.org/10.3390/app9224830