Cross-Layer and SDN Based Routing Scheme for P2P Communication in Vehicular Ad-Hoc Networks
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. SDVN Framework
2.1.1. Registering Phase
2.1.2. Route Prediction Phase
2.1.3. Access Wireless Communication Protocol
2.2. Proposed Routing Scheme
2.2.1. Routing Metrics
- A.
- Forwarding probability
- B.
- Link duration
- C.
- Wireless bandwidth allocation
2.2.2. Routing Format
2.2.3. Routing Table
2.2.4. Route Establishment and Data Transmission
- (i)
- each vehicle sends “state updating” messages (line 2),
- (ii)
- the source vehicle sends RREQ packet (line 3),
- (iii)
- the local controllers distribute RREP packets for link establishment (lines 4–10),
- (iv)
- route refreshing phase (lines 11–14).
Algorithm 1 route discovery process. |
Input: NodeSet |
Output: Routing path from source vehicle to destination |
Initialize: CycleSet, PathSet, Head, Tail |
Notation: |
NodeSet: The vehicle’s location at current cycle |
CycleSet: The prediction of vehicle’s location at next cycle |
PathSet: The stack used to store routing path |
1. Begin |
2. if NodeSet is empty |
3. say ‘error’ and go to 25 |
4. end if |
5. if Distance (Source_node, Destination_ node) |
>Distance_Threshold |
6. say ‘error’ and go to 25 |
7. CycleSet = calculate NodeSet location after |
Cycle |
8. Head = Source_node |
9. Tail = Destination_node |
10. Push (PathSet, Head) |
11. Sort CycleSet by Distance (CycleSet, Head) |
12. for each Nodei CycleSet from Head to Tail |
13. if Distance (Head, ) < |
Communication Radius of Vehicle AND |
> threshold value |
14. if > threshold |
AND interval time |
15. Push (PathSet, Nodei) AND |
Head = Nodei |
16. end if |
17. end if |
18. end for |
19. check if PathSet.top! = Tail AND |
PathSet.top! = Null |
20. Nodex = pop(PathSet) AND delete Nodex |
from CycleSet AND Head = PathSet.top |
AND go to 12 |
21. end if |
22. if PathSet.top = Null |
say’ error’ and go to 25 |
23. end if |
24. say ‘success’ |
25. END Algorithm 1 |
Algorithm 2 the whole session process. |
Input: Source vehicle |
Output: Forward the data packet toward destination vehicle |
Notation: |
PathSet: The data structure used to store routing path |
CSI: The channel state information |
Next_Hop: The next hop vehicle |
1. Begin |
2. Each vehicle periodically unicasts message |
“Hello_msg” to nearest RSU with fields: velocity, location, pseudo-ID, CSI |
3. The source vehicle generates data to send |
AND sends RREQ message to nearest RSU |
4. The local controllers cooperate with SDN |
controllers establish Pathset by Algorithm 1 |
OR repair the damaged path |
5. The controller group sets an interval |
Time |
6. for each controller |
unicasts RREPi message to Nodei within its coverage AND Nodei Pathset with fields: Rsu_ID, Vehicle_ID, Package_ID, Last_Hop, Next_Hop, SendTime, DelayTime, ExpiredTime, CMC |
7. end for |
8. for each Nodei Pathset |
9. when Nodei receives RREPi then |
immediately updates the Routing table AND connects with Next_Hop marked in RREPi |
10. end for |
11. if link establishment fails OR link damages |
12. go to 4 |
13. else |
14. link maintains Until time out then go |
to 4 OR data transmission finishes then go to 15 |
15. end if |
16. END Algorithm 2 |
3. Results and Discussion
3.1. Performance Analysis
3.1.1. Benefits of SDN Migration
3.1.2. Cross-Layer Solution
3.1.3. Communication Load
3.2. Simulation Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaur, M. Vehicular Ad Hoc networks. J. Glob. Res. Comput. Sci. 2012, 3, 61–64. [Google Scholar]
- Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Altameem, A.; Prasad, M.; Lin, C.-T.; Liu, X.; Lin, C.-T. Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects. IEEE Access 2016, 4, 5356–5373. [Google Scholar] [CrossRef]
- Bhat, S.; Udechukwu, R.; Dutta, R.; Rouskas, G.N. Network service orchestration in heterogeneous 5G networks using an open marketplace. IET Netw. 2017, 6, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Omheni, N.; Bouabidi, I.; Gharsallah, A.; Zarai, F.; Obaidat, M.S.; Imen, B. Smart mobility management in 5G heterogeneous networks. IET Netw. 2018, 7, 119–128. [Google Scholar] [CrossRef]
- Daraghmi, Y.-A.; Yi, C.-W.; Stojmenovic, I. Forwarding methods in data dissemination and routing protocols for vehicular Ad Hoc networks. IEEE Netw. 2013, 27, 74–79. [Google Scholar] [CrossRef]
- Wu, C.; Ohzahata, S.; Ji, Y.; Kato, T. How to utilize inter-flow network coding in VANETs: A backbone based approach. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2223–2237. [Google Scholar] [CrossRef]
- Venkatramana, D.K.N.; Srikantaiah, S.B.; Moodabidri, J. SCGRP: SDN-enabled connectivity-aware geographical routing protocol of VANETs for urban environment. IET Netw. 2017, 6, 102–111. [Google Scholar] [CrossRef]
- Khushdeep, S.; Sanjay, B.; Alka, J.; Amardeep, S. Trusted border-node based most forward within radius routing protocol. Int. J. Adv. Res. Comput. Sci. 2014, 5, 216–230. [Google Scholar]
- Nunes, B.A.A.; Mendonca, M.; Nguyen, X.-N.; Obraczka, K.; Turletti, T.; Nunes, B.A.A. A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [Google Scholar] [CrossRef] [Green Version]
- Fontes, R.D.R.; Campolo, C.; Rothenberg, C.E.; Molinaro, A. From Theory to Experimental Evaluation: Resource Management in Software-Defined Vehicular Networks. IEEE Access 2017, 5, 3069–3076. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Wang, C.; Zhou, M.; Jiang, C. Improved Rule Installation for Real-Time Query Service in Software-Defined Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 18, 225–235. [Google Scholar]
- Li, H.; Dong, M.; Ota, K. Control Plane Optimization in Software-Defined Vehicular Ad Hoc Networks. IEEE Trans. Veh. Technol. 2016, 65, 7895–7904. [Google Scholar] [CrossRef] [Green Version]
- Alioua, A.; Senouci, S.-M.; Moussaoui, S.; Eichler, G.; Erfurth, C.; Fahrnberger, G. dSDiVN: A Distributed Software-Defined Networking Architecture for Infrastructure-Less Vehicular Networks. Relat. Datenbanken 2017, 717, 56–67. [Google Scholar]
- Ku, I.; Lu, Y.; Gerla, M.; Gomes, R.L.; Ongaro, F.; Cerqueira, E. Towards software-defined VANET: Architecture and services and services. In Proceedings of the Ad Hoc Networking Workshop, MED-HOC-NET 2014, Piran, Slovenia, 2–4 June 2014; pp. 103–110. [Google Scholar]
- Liu, Y.-C.; Chen, C.; Chakraborty, S. A software defined network architecture for GeoBroadcast in VANETs. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 6559–6564. [Google Scholar]
- Dong, B.; Wu, W.; Yang, Z.; Li, J. Software defined networking based on-demand routing protocol in vehicle ad hoc networks. In Proceedings of the 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Hefei, China, 16–18 December 2016; pp. 207–213. [Google Scholar]
- Wan, J.; Zhang, D.; Sun, Y.; Lin, K.; Zou, C.; Cai, H. VCMIA: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mob. Netw. Appl. 2014, 19, 153–160. [Google Scholar] [CrossRef]
- Aujla, G.S.; Chaudhary, R.; Kumar, N.; Rodrigues, J.J.P.C.; Vinel, A. Data Offloading in 5G-Enabled Software-Defined Vehicular Networks: A Stackelberg-Game-Based Approach. IEEE Commun. Mag. 2017, 55, 100–108. [Google Scholar] [CrossRef]
- Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of internet of vehicles. China Commun. 2014, 11, 1–15. [Google Scholar] [CrossRef]
- Dong, B.; Wu, W.; Yang, Z.; Li, J. Software Defined Networking Based On-Demand Routing Protocol in Vehicle Ad-Hoc Networks. ZTE Commun. 2017, 2, 1673–5188. [Google Scholar]
- Zhang, D.; Yu, F.R.; Wei, Z.; Boukerche, A. Trust-based Secure Routing in Software-Defined Vehicular Ad Hoc Networks. arXiv 2016, arXiv:1611.04012. [Google Scholar]
- Thota, J.; Almesaeed, R.; Doufexi, A.; Armour, S.; Nix, A.R. Infrastructure to Vehicle Throughput Performance in LTE-A Using 2D and 3D 3GPP/ITU Channel Models. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Liu, J.; Kato, N.; Ma, J.; Kadowaki, N. Device-to-device communication in LTE-advanced networks: A survey. IEEE Commun. Surv. Tutor. 2015, 17, 1923–1940. [Google Scholar] [CrossRef]
- Shaik, S.; Ratnam, D.V.; Bhandari, B.N. An Efficient Cross Layer Routing Protocol for Safety Message Dissemination in VANETS with Reduced Routing Cost and Delay Using IEEE 802.11p. Wirel. Pers. Commun. 2018, 100, 1765–1774. [Google Scholar] [CrossRef]
- Yu, Y.T.; Gerla, M.; Sanadidi, M.Y. Scalable VANET content routing using hierarchical bloom filters. Wirel. Commun. Mob. Comput. 2015, 15, 1629–1634. [Google Scholar] [CrossRef]
- Rawat, D.B.; Bista, B.B.; Yan, G. CoR-VANETs: Game Theoretic Approach for Channel and Rate Selection in Cognitive Radio VANETs. Traffic Eng. 2010, 23, 56–62. [Google Scholar]
- Hassan, M.U.; Karim, S.; Shah, S.K.; Abbas, S.; Yasin, M.; Shahzaib, M.; Umair, M. A Comparative Study on Frequent Link Disconnection problems in VANETs. EAI Endorsed Trans. Energy Web 2018, 5, e2. [Google Scholar]
Number of Nodes | 15, 30, 50, above 70 |
---|---|
Total simulation time | 300 s |
Area size | 10 × 5 km |
Packet size | 1024 bytes |
MAC protocol | IEEE 802.11 p |
Mobility Model | Random Waypoint |
Vehicle moving speed | 15–20 km/h |
Vehicle max speed | 25 km/h |
Radio range | 500 m |
Link alive time | 5 s |
Broadcasting cycle | 1–1.5 s |
Max distance | 2 km |
Protocols | Efficient AODV, SVAO, SDGR, the proposed algorithm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Z.; Cheng, G.; Wang, Y.; Chen, P.; Chen, S. Cross-Layer and SDN Based Routing Scheme for P2P Communication in Vehicular Ad-Hoc Networks. Appl. Sci. 2019, 9, 4734. https://doi.org/10.3390/app9224734
You Z, Cheng G, Wang Y, Chen P, Chen S. Cross-Layer and SDN Based Routing Scheme for P2P Communication in Vehicular Ad-Hoc Networks. Applied Sciences. 2019; 9(22):4734. https://doi.org/10.3390/app9224734
Chicago/Turabian StyleYou, Ziyi, Guixian Cheng, Yi Wang, Pu Chen, and Shiguo Chen. 2019. "Cross-Layer and SDN Based Routing Scheme for P2P Communication in Vehicular Ad-Hoc Networks" Applied Sciences 9, no. 22: 4734. https://doi.org/10.3390/app9224734
APA StyleYou, Z., Cheng, G., Wang, Y., Chen, P., & Chen, S. (2019). Cross-Layer and SDN Based Routing Scheme for P2P Communication in Vehicular Ad-Hoc Networks. Applied Sciences, 9(22), 4734. https://doi.org/10.3390/app9224734