Influence of Chitosan Addition on Resorcinol–Formaldehyde Xerogel Structure
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of RFX with Chitosan
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, F.; Cai, M.-L.; Chen, W.; Bai, Z.-W. Performances comparison of enantiomeric separation materials prepared from shrimp and crab shells. Carbohydr. Polym. 2019, 204, 238–246. [Google Scholar] [CrossRef] [PubMed]
- El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A. Lahsini, Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019, 263, 131–194. [Google Scholar] [CrossRef]
- Samar, M.M.; El-Kalyoubi, M.H.; Khalaf, M.M.; Abd El-Razik, M.M. Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci. 2013, 58, 33–41. [Google Scholar] [CrossRef]
- Jommanee, N.; Chanthad, C.; Manokruang, K. Preparation of injectable hydrogels from temperature and pH responsive grafted chitosan with tuned gelation temperature suitable for tumor acidic environment. Carbohydr. Polym. 2018, 198, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Tango, C.N.; Miskeen, S.; Oh, D.-H. Evaluation of nisin-loaded chitosan-monomethyl fumaric acid nanoparticles as a direct food additive. Carbohydr. Polym. 2018, 184, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, F.A.; González, J.C.; García, S.L.; Sala, L.F.; Bellú, S.E. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr. Polym. 2018, 180, 55–62. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, J.; Zhao, X.; Dong, F.; Li, Q.; Guo, Z. Synthesis and antioxidant action of chitosan derivatives with amino-containing groups via azide-alkyne click reaction and N-methylation. Carbohydr. Polym. 2018, 199, 583–592. [Google Scholar] [CrossRef]
- Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. [Google Scholar] [CrossRef]
- Czarnobaj, K.; Czarnobaj, J. Sol-gel processed porous silica carriers for the controlled release of diclofenac diethylamine. J. Biomed. Mater. Res. 2008, 87B, 114–120. [Google Scholar] [CrossRef]
- Al-Muhtaseb, S.A.; Ritter, J.A. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv. Mater. 2003, 15, 101–114. [Google Scholar] [CrossRef]
- Thapaa, B.S.; Seetharamanb, S.; Chettyb, R.; Chandra, T.S. Xerogel based catalyst for improved cathode performance in microbial fuel cells. Enzym. Microb. Technol. 2019, 124, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kraiwattanawong, K. Improvement of the textural properties of templated carbon xerogels using cotton fibres as a hard template dehydrated by sulphuric acid. Diam. Relat. Mater. 2019, 92, 9–17. [Google Scholar] [CrossRef]
- Hrubesh, L.W. Aerogel applications. J. Non-Cryst. Solids 1998, 225, 335–342. [Google Scholar] [CrossRef]
- Zhou, J.; Ji, Y.; He, J.; Zhang, C.; Zhao, G. Enhanced mesoporosity and capacitance property of spherical carbon aerogel prepared by associating Mg(OH)2 with non-ionic surfactant. Microporous Mesoporous Mater. 2008, 114, 424–430. [Google Scholar] [CrossRef]
- Attiaa, S.M.; Ismail, W.I.A.; Mossad, M.M. Characterization of pure and composite resorcinol formaldehyde aerogels doped with copper. Egypt. J. Phys. 2017, 45, 11–22. [Google Scholar] [CrossRef]
- Li, T.; Cao, M.; Liang, J.; Xie, X.; Du, G. Mechanism of Base-Catalyzed Resorcinol-Formaldehyde and Phenol-Resorcinol-Formaldehyde Condensation Reactions: A Theoretical Study. Polymers 2017, 9, 426. [Google Scholar] [CrossRef]
- Chen, F.; Xu, M.; Wang, L.; Li, J. Preparation and characterization of organic aerogels from a lignin-resorcinol-formaldehyde copolymer. BioResources 2011, 6, 1262–1272. [Google Scholar]
- Kinnertová, E.; Slovák, V. Influence of catalyst amount on properties of resorcinol-formaldehyde xerogels. Thermochim. Acta 2018, 660, 37–43. [Google Scholar] [CrossRef]
- Rincipe, I.A.; Fletcher, A.J. Parametric study of factors affecting melamine-resorcinol-formaldehyde xerogels properties. Mater. Today 2018, 7, 5–14. [Google Scholar]
- Alshrah, M.; Naguib, H.E.; Park, C.B. Reinforced resorcinol formaldehyde aerogel with Co-assembled polyacrylonitrile nanofibers and graphene oxide nanosheets. Mater. Des. 2018, 151, 154–163. [Google Scholar] [CrossRef]
- Rishechko, L.I.; Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Kuznetsov, B.N.; Celzard, A. Lignin—phenol—formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 2013, 168, 19–29. [Google Scholar] [CrossRef]
- Haghgoo, M.; Yousefi, A.A.; Mehr, M.J.Z.; Celzard, A.; Fierro, V.; Léonard, A.F.; Léonard, A.; Job, N. Characterization of multi-walled carbon nanotube dispersion in resorcinol–formaldehyde aerogels. Microporous Mesoporous Mater. 2014, 184, 97–104. [Google Scholar] [CrossRef]
- Wadallah-F, A.; Elkhatat, A.M.; Al-Muhtaseb, S.A. Impact of synthesis conditions on meso- and macropore structures of resorcinol—Formaldehyde xerogels. J. Mater. Sci. 2011, 46, 7760–7769. [Google Scholar] [CrossRef]
- Palaniselvam, T.; Aiyappa, H.B.; Kurungot, S. An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites. J. Mater. Chem. 2012, 22, 23799–23805. [Google Scholar] [CrossRef]
- Mulik, S.; Sotiriou-Leventis, C.; Leventis, N. Time-efficient acid-catalyzed synthesis of resorcinol−formaldehyde aerogels. Chem. Mater. 2007, 19, 6138–6144. [Google Scholar] [CrossRef]
x | R | F | W | C | Cs | Acetic Acid |
---|---|---|---|---|---|---|
0 | 18.585% | 32.676% | 48.703% | 0.036% | 0% | 0% |
1 | 18.528% | 32.575% | 47.064% | 0.036% | 0.007% | 1.790% |
2 | 18.471% | 32.475% | 45.434% | 0.036% | 0.015% | 3.569% |
3 | 18.414% | 32.375% | 43.815% | 0.036% | 0.022% | 5.338% |
4 | 18.358% | 32.277% | 42.205% | 0.035% | 0.029% | 7.095% |
5 | 18.302% | 32.178% | 40.606% | 0.035% | 0.037% | 8.842% |
Sample | (ID/IG) a | VTotalb (cm3/g) | STotal b (m2/g) | Average Particle Size b (nm) | Adsorption Capacity of N2 b at 77 K (mmol/g) | Average Pore width b (nm) | Elemental Analysis (%) | ||
---|---|---|---|---|---|---|---|---|---|
C | H | N | |||||||
RFX–Cs-0 | 0.51 | ≤93 nm c = 0.290 | ≥1 nm d = 138 | 112 | 8.97 | 4 | 62.07 | 5.51 | 0 |
RFX–Cs-1 | 0.65 | ≤1 nm c = 9 × 10−5 | ≥1 nm d = 0.03 | 20,221 | 0.03 | 1 | 60.70 | 5.23 | 0.09 |
RFX–Cs-2 | 0.70 | ≤1 nm c = 24 × 10−5 | ≥1 nm d = 0.189 | 7487 | 0.02 | 1 | 61.66 | 5.13 | 0.16 |
RFX–Cs-3 | 0.71 | ≤186 nm c = 0.20 | ≥68 nm d = 6.146 | ND | 6.20 | 90 | 60.54 | 5.11 | 0.12 |
RFX–Cs-4 | 0.72 | ≤400 nm c = 0.07 | ≥1 nm d = 17.61 | 2038 | 2.09 | 8 | 60.49 | 4.82 | 0.23 |
RFX–Cs-5 | 0.78 | ≤217 nm c = 0.21 | ≥1 nm d = 48.23 | 482 | 5.49 | 9 | 59.80 | 4.68 | 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadallah-F, A.; Al-Muhtaseb, S.A. Influence of Chitosan Addition on Resorcinol–Formaldehyde Xerogel Structure. Appl. Sci. 2019, 9, 4582. https://doi.org/10.3390/app9214582
Awadallah-F A, Al-Muhtaseb SA. Influence of Chitosan Addition on Resorcinol–Formaldehyde Xerogel Structure. Applied Sciences. 2019; 9(21):4582. https://doi.org/10.3390/app9214582
Chicago/Turabian StyleAwadallah-F, Ahmed, and Shaheen A. Al-Muhtaseb. 2019. "Influence of Chitosan Addition on Resorcinol–Formaldehyde Xerogel Structure" Applied Sciences 9, no. 21: 4582. https://doi.org/10.3390/app9214582
APA StyleAwadallah-F, A., & Al-Muhtaseb, S. A. (2019). Influence of Chitosan Addition on Resorcinol–Formaldehyde Xerogel Structure. Applied Sciences, 9(21), 4582. https://doi.org/10.3390/app9214582