Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes
Funding
Conflicts of Interest
References
- Švarcová, J.; Urbánek, T.; Povolná, L.; Sobotková, E. Implementation of R&D Results and Industry 4.0 Influenced by Selected Macroeconomic Indicators. Appl. Sci. 2019, 9, 1846. [Google Scholar] [CrossRef]
- Gerrikagoitia, J.; Unamuno, G.; Urkia, E.; Serna, A. Digital Manufacturing Platforms in the Industry 4.0 from Private and Public Perspectives. Appl. Sci. 2019, 9, 2934. [Google Scholar] [CrossRef]
- Ungerman, O.; Dědková, J. Marketing Innovations in Industry 4.0 and Their Impacts on Current Enterprises. Appl. Sci. 2019, 9, 3685. [Google Scholar] [CrossRef]
- Lim, S.; Kim, J. Technology Portfolio and Role of Public Research Institutions in Industry 4.0: A Case of South Korea. Appl. Sci. 2019, 9, 2632. [Google Scholar] [CrossRef]
- Chen, Y.; Ting, K.; Chen, Y.; Yang, D.; Chen, H.; Ying, J. A Low-Cost Add-On Sensor and Algorithm to Help Small- and Medium-Sized Enterprises Monitor Machinery and Schedule Processes. Appl. Sci. 2019, 9, 1549. [Google Scholar] [CrossRef]
- Iglesias, A.; Sagardui, G.; Arellano, C. Industrial Cyber-Physical System Evolution Detection and Alert Generation. Appl. Sci. 2019, 9, 1586. [Google Scholar] [CrossRef]
- Langmann, R.; Stiller, M. The PLC as a Smart Service in Industry 4.0 Production Systems. Appl. Sci. 2019, 9, 3815. [Google Scholar] [CrossRef]
- Patalas-Maliszewska, J.; Kłos, S. An Approach to Supporting the Selection of Maintenance Experts in the Context of Industry 4.0. Appl. Sci. 2019, 9, 1848. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Q.; Pannek, J. Development of Operator Theory in the Capacity Adjustment of Job Shop Manufacturing Systems. Appl. Sci. 2019, 9, 2249. [Google Scholar] [CrossRef]
- LaCasse, P.; Otieno, W.; Maturana, F. A Survey of Feature Set Reduction Approaches for Predictive Analytics Models in the Connected Manufacturing Enterprise. Appl. Sci. 2019, 9, 843. [Google Scholar] [CrossRef]
- Solarte-Pardo, B.; Hidalgo, D.; Yeh, S. Cutting Insert and Parameter Optimization for Turning Based on Artificial Neural Networks and a Genetic Algorithm. Appl. Sci. 2019, 9, 479. [Google Scholar] [CrossRef]
- Roesch, M.; Bauer, D.; Haupt, L.; Keller, R.; Bauernhansl, T.; Fridgen, G.; Reinhart, G.; Sauer, A. Harnessing the Full Potential of Industrial Demand-Side Flexibility: An End-to-End Approach Connecting Machines with Markets through Service-Oriented IT Platforms. Appl. Sci. 2019, 9, 3796. [Google Scholar] [CrossRef]
- Schimanski, C.; Pasetti Monizza, G.; Marcher, C.; Matt, D. Pushing Digital Automation of Configure-to-Order Services in Small and Medium Enterprises of the Construction Equipment Industry: A Design Science Research Approach. Appl. Sci. 2019, 9, 3780. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J.; Jing, J.; Li, P. Fabric Defect Detection Using L0 Gradient Minimization and Fuzzy C-Means. Appl. Sci. 2019, 9, 3506. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, G.; Xu, F.; Deng, H. A Generic Automated Surface Defect Detection Based on a Bilinear Model. Appl. Sci. 2019, 9, 3159. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Han, Z.; Zhao, D. Contour Detection for Fibre of Preserved Szechuan Pickle Based on Dilated Convolution. Appl. Sci. 2019, 9, 2684. [Google Scholar] [CrossRef]
- Liu, J.; Feng, T.; Fang, X.; Huang, S.; Wang, J. An Intelligent Vision System for Detecting Defects in Micro-Armatures for Smartphones. Appl. Sci. 2019, 9, 2185. [Google Scholar] [CrossRef]
- Ma, L.; Xie, W.; Zhang, Y. Blister Defect Detection Based on Convolutional Neural Network for Polymer Lithium-Ion Battery. Appl. Sci. 2019, 9, 1085. [Google Scholar] [CrossRef]
- Li, Y.; Han, Z.; Xu, H.; Liu, L.; Li, X.; Zhang, K. YOLOv3-Lite: A Lightweight Crack Detection Network for Aircraft Structure Based on Depthwise Separable Convolutions. Appl. Sci. 2019, 9, 3781. [Google Scholar] [CrossRef]
- Mejia-Parra, D.; Sánchez, J.; Ruiz-Salguero, O.; Alonso, M.; Izaguirre, A.; Gil, E.; Palomar, J.; Posada, J. In-Line Dimensional Inspection of Warm-Die Forged Revolution Workpieces Using 3D Mesh Reconstruction. Appl. Sci. 2019, 9, 1069. [Google Scholar] [CrossRef]
- Lv, Z.; Su, Z.; Zhang, D.; Gao, L.; Yang, Z.; Fang, F.; Zhang, H.; Li, X. The Self-Calibration Method for the Vertex Distance of the Elliptical Paraboloid Array. Appl. Sci. 2019, 9, 3485. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, H.; Guo, J.; Liu, D.; Xie, C.; Liu, Q.; Cheng, Z. Construction of an Industrial Knowledge Graph for Unstructured Chinese Text Learning. Appl. Sci. 2019, 9, 2720. [Google Scholar] [CrossRef]
- Smithers, T.; Posada, J.; Stork, A.; Pianciamore, M.; Ferreira, N.; Grimm, S.; Jimenez, I.; Di Marca, S.; Marcos, G.; Mauri, M.; et al. Information Management and Knowledge Sharing in WIDE. In Proceedings of the European Workshop for the Integration of Knowledge, Semantics and Digital Media Technology, London, UK, 25–26 November 2004; pp. 351–358, ISBN 0-902-23810-8. [Google Scholar]
- Graña, M.; Toro, C.; Posada, J.; Howlett, R.; Jain, L.C. (Eds.) Advances in Knowledge-Based and Intelligent Information and Engineering Systems; Frontiers in Artificial Intelligence and Applications; IOS Press: Amsterdam, The Netherlands, 2012; Volume 243. [Google Scholar]
- Posada, J.; Zorrilla, M.; Dominguez, A.; Simoes, B.; Eisert, P.; Stricker, D.; Rambach, J.; Döllner, J.; Guevara, M. Graphics and Media Technologies for Operators in Industry 4.0. IEEE Comput. Graph. Appl. 2018, 38, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.; Diez, H.; Barandiaran, I.; Arbelaiz, A.; Alvarez, H.; Simoes, B.; Posada, J.; García-Alonso, A.; Ugarte, R. Visual Computing Technologies to support the Operator 4.0. Comput. Ind. Eng. 2018. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lacalle, L.N.L.; Posada, J. Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes. Appl. Sci. 2019, 9, 4323. https://doi.org/10.3390/app9204323
de Lacalle LNL, Posada J. Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes. Applied Sciences. 2019; 9(20):4323. https://doi.org/10.3390/app9204323
Chicago/Turabian Stylede Lacalle, Luis Norberto López, and Jorge Posada. 2019. "Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes" Applied Sciences 9, no. 20: 4323. https://doi.org/10.3390/app9204323
APA Stylede Lacalle, L. N. L., & Posada, J. (2019). Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes. Applied Sciences, 9(20), 4323. https://doi.org/10.3390/app9204323