A Two-Stage Method for Parameter Identification of a Nonlinear System in a Microbial Batch Process
Abstract
:1. Introduction
2. Parameter Identification Model for the Microbial Batch Process
2.1. Microbial Batch Process
2.2. Parameter Identification Model
- The inequality constraints in Equations (21)–(25) keep the specific growth rate , specific consumption rate , and specific formation rates , , and within certain physically and chemically feasible limits;
- Obviously, the parameter identification model in Equations (13)–(41) is a nonlinear dynamic optimization problem with complex constraints. Therefore, it is difficult to solve for global optimality.
3. Two-Stage Method for the Parameter Identification Model
3.1. Two-Stage Method
- In the computation of the optimization problem in Equations (79)–(90), the slopes () in the objective function of Equation (79) can be computed by the following formulations:The slopes () of experimental data can be estimated by the method given in Section 3.2;
- The optimization problem in Equations (79)–(90) is a relatively simple quadratic programming problem compared to the nonlinear programming problem in Equations (66)–(78). Thus, it is easy to obtain the globally optimal solution of the problem in Equations (79)–(90) with the available quadratic programming algorithms.
3.2. Computing the Slopes of Experimental Data
4. Optimization Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Biebl, H.; Menzel, K.; Zeng, A.-P.; Deckwer, W.-D. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 1999, 52, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Z.; Song, B.; Wang, Z.; Sun, L.; Feng, E.; Zeng, A.-P. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochem. Eng. J. 2004, 19, 189–197. [Google Scholar] [CrossRef]
- Xiu, Z.; Zeng, A.-P.; Deckwer, W.-D. Multiplicity and stability analysis of microorganisms in continuous culture: Effects of metabolic overflow and growth inhibition. Biotechnol. Bioeng. 1998, 57, 251–261. [Google Scholar] [CrossRef]
- Zeng, A.-P.; Deckwer, W.-D. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol. Prog. 1995, 11, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Zeng, A.-P.; Biebl, H. Bulk-chemicals from biotechnology: The case of microbial production of 1,3-propanediol and the new trends. In Tools and Applications of Biochemical Engineering Science; Schüger, K., Zeng, A.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 74, pp. 239–259. ISBN 978-3-540-45736-7. [Google Scholar]
- Lama, S.; Seol, E.; Park, S. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose. Bioresour. Technol. 2017, 245, 1542–1550. [Google Scholar] [CrossRef]
- Lee, C.S.; Aroua, M.K.; Daud, W.M.A.W.; Cognet, P.; Pérès-Lucchese, Y.; Fabre, P.-L.; Reynes, O.; Latapie, L. A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew. Sustain. Energy Rev. 2015, 42, 963–972. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, J.; Yan, L.; Zhou, J.; Jiang, L.; Chen, Y.; Yuan, J.; Feng, E.; Xiu, Z. Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges. Process Biochem. 2018, 71, 134–146. [Google Scholar] [CrossRef]
- Vivek, N.; Aswathi, T.V.; Sven, P.R.; Pandey, A.; Binod, P. Self-cycling fermentation for 1,3-propanediol production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9.3.3 strain. J. Biotechnol. 2017, 259, 110–119. [Google Scholar] [CrossRef]
- Rodriguez, A.; Wojtusik, M.; Masca, F.; Santos, V.E.; Garcia-Ochoa, F. Kinetic modeling of 1,3-propanediol production from raw glycerol by Shimwellia blattae: Influence of the initial substrate concentration. Biochem. Eng. J. 2017, 117, 57–65. [Google Scholar] [CrossRef]
- Liu, C.; Gong, Z.; Teo, K.L.; Loxton, R.; Feng, E. Bi-objective dynamic optimization of a nonlinear time-delay system in microbial batch process. Optim. Lett. 2018, 12, 1249–1264. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, C.; Zhang, X.; Xie, J.; Feng, E.; Yin, H.; Xiu, Z. Optimal control of a batch fermentation process with nonlinear time-delay and free terminal time and cost sensitivity constraint. J. Process Control 2016, 44, 41–52. [Google Scholar] [CrossRef]
- Hirokawa, Y.; Maki, Y.; Hanai, T. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Metab. Eng. 2017, 39, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Narisetty, V.; Astray, G.; Gullón, B.; Castro, E.; Parameswaran, B.; Pandey, A. Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: Validation with statistical and neural approach. Biochem. Eng. J. 2017, 126, 109–117. [Google Scholar] [CrossRef]
- Xu, G.; Liu, Y.; Gao, Q. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1,3-propanediol. J. Biotechnol. 2016, 219, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Li, C. Identifying the shared metabolic objectives of glycerol bioconversion in Klebsiella pneumoniae under different culture conditions. J. Biotechnol. 2017, 248, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Wang, M. Parameter identification of a biological process: A comparative study. In Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8–10 July 2016; IEEE Computer Society: Los Alamitos, CA, USA, 2016; pp. 1034–1038. [Google Scholar]
- Xu, G.; Wang, D.; Li, C. Optimization of continuous bioconversion process of glycerol to 1,3-propanediol. Int. J. Bioautomation 2018, 22, 199–212. [Google Scholar] [CrossRef]
- Wischral, D.; Zhang, J.; Cheng, C.; Lin, M.; De Souza, L.M.G.; Pessoa, F.L.P.; Pereira, N., Jr.; Yang, S. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. Bioresour. Technol. 2016, 212, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.; Almeida, Y.B.; Pinheiro, I.O.; Knoelchelmann, A.; Silva, J.M.F. Multiplicity of steady states in a bioreactor during the production of 1,3-propanediol by Clostridium butyricum. Bioprocess Biosyst. Eng. 2015, 38, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Q.; Loxton, R.; Teo, K.L.; Cheng, G. Optimal 1,3-propanediol production: Exploring the trade-off between process yield and feeding rate variation. J. Process Control 2015, 32, 1–9. [Google Scholar] [CrossRef]
- Kumar, V.; Durgapal, M.; Sankaranarayanan, M.; Somasundar, A.; Rathnasingh, C.; Song, H.; Seung, D.; Park, S. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. Bioresour. Technol. 2016, 214, 432–440. [Google Scholar] [CrossRef]
- Hirokawa, Y.; Maki, Y.; Tatsuke, T.; Hanai, T. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metab. Eng. 2016, 34, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celińska, E. Klebsiella spp. as a 1,3-propanediol producer–the metabolic engineering approach. Crit. Rev. Biotechnol. 2012, 32, 274–288. [Google Scholar] [CrossRef]
- Biegler, L.T. Nonlinear Programming: Concepts, Algorithm, and Applications to Chemical Processes; SIAM: Philadelphia, PA, USA, 2010; pp. 287–324. ISBN 978-0-898717-02-0. [Google Scholar]
- Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming; SIAM: Philadelphia, PA, USA, 2010; pp. 91–149. ISBN 978-0-898716-88-7. [Google Scholar]
- Guo, T.; Allison, J.T. On the use of mathematical programs with complementarity constraints in combined topological and parametric design of biochemical enzyme networks. Eng. Optim. 2017, 49, 345–364. [Google Scholar] [CrossRef]
- Almeida, J.S.; Voit, E.O. Neural-network-based parameter estimation in S-system models of biological networks. Genome Inform. 2003, 14, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Tian, T. A continuous optimization approach for inferring parameters in mathematical models of regulatory networks. BMC Bioinform. 2014, 15, 256. [Google Scholar] [CrossRef]
- Lubansky, A.S.; Yeow, Y.L.; Leong, Y.-K.; Wickramasinghe, S.R.; Han, B. A general method of computing the derivative of experimental data. AIChE J. 2006, 52, 323–332. [Google Scholar] [CrossRef]
- Feng, E.; Xiu, Z. Nonlinear Fermentation Dynamic System: Identification, Control and Parallel Optimization; Science Press: Beijing, China, 2012; ISBN 978-7-03-034959-0. [Google Scholar]
Parameter | Lower Bound | Upper Bound |
---|---|---|
μ(t0) | 0 | 0.67 |
μ(t1) | 0 | 0.67 |
μ(t2) | 0 | 0.67 |
μ(t3) | 0 | 0.67 |
μ(t4) | 0 | 0.67 |
qS(t0) | 0 | 100 |
qS(t1) | 0 | 100 |
qS(t2) | 0 | 100 |
qS(t3) | 0 | 100 |
qS(t4) | 0 | 100 |
qPD(t0) | 0 | 100 |
qPD(t1) | 0 | 100 |
qPD(t2) | 0 | 100 |
qPD(t3) | 0 | 100 |
qPD(t4) | 0 | 100 |
qHAc(t0) | 0 | 100 |
qHAc(t1) | 0 | 100 |
qHAc(t2) | 0 | 100 |
qHAc(t3) | 0 | 100 |
qEtOH(t0) | 0 | 100 |
qEtOH(t1) | 0 | 100 |
qEtOH(t2) | 0 | 100 |
qEtOH(t3) | 0 | 100 |
qEtOH(t4) | 0 | 100 |
Parameter | Lower Bound | Optimal Value | Upper Bound |
---|---|---|---|
p1 | 1 | 4.945 | 5 |
p2 | 0.0001 | 0.024 | 2 |
p3 | 10 | 10.075 | 50 |
p4 | 1 | 20.427 | 30 |
p5 | −5 | −4.823 | −1 |
p6 | 10 | 34.755 | 100 |
p7 | 1 | 4.246 | 50 |
p8 | 1 | 23.830 | 100 |
p9 | −2 | −0.285 | −0.01 |
p10 | 10 | 19.235 | 50 |
p11 | 1 | 1.113 | 10 |
p12 | 10 | 86.994 | 100 |
p13 | −10 | −4.554 | −0.01 |
p14 | 2 | 20.192 | 50 |
p15 | 1 | 2.370 | 20 |
p16 | 10 | 95.515 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Lv, D.; Tan, W. A Two-Stage Method for Parameter Identification of a Nonlinear System in a Microbial Batch Process. Appl. Sci. 2019, 9, 337. https://doi.org/10.3390/app9020337
Xu G, Lv D, Tan W. A Two-Stage Method for Parameter Identification of a Nonlinear System in a Microbial Batch Process. Applied Sciences. 2019; 9(2):337. https://doi.org/10.3390/app9020337
Chicago/Turabian StyleXu, Gongxian, Dongxue Lv, and Wenxin Tan. 2019. "A Two-Stage Method for Parameter Identification of a Nonlinear System in a Microbial Batch Process" Applied Sciences 9, no. 2: 337. https://doi.org/10.3390/app9020337
APA StyleXu, G., Lv, D., & Tan, W. (2019). A Two-Stage Method for Parameter Identification of a Nonlinear System in a Microbial Batch Process. Applied Sciences, 9(2), 337. https://doi.org/10.3390/app9020337