Combination of 2D Compressive Sensing Spectral Domain Optical Coherence Tomography and Interferometric Synthetic Aperture Microscopy
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Interferometric Synthetic Aperture Microscopy (ISAM)
2.2. 2D Compressive Sensing Spectral Domain Optical Coherence Tomography
2.3. Reconstruction Procedures of 2D Compressive Sensing Interferometric Synthetic Aperture Microscopy
- (1) Initialization: residual signal r_n = , reconstructed signal , and measurement matrix T = Mk F.
- (2) Apply IDFT to r_n to get spatial-domain signal S1.
- (3) Find signal peaks with intensity higher than preset value I1 in S1.
- (4) Update residual signal r_n and reconstructed signal using the least squares method [10].
- (5) Repeat step (2) for the updated r_n and .
- (6) Repeat step (3) and use a lower light intensity threshold I2 to find smaller signals.
- (7) Repeat steps above until the ε is less than the set value, and then obtain the reconstructed signals , from which we can get and .
- (1) Initialization: residual signal r_n = , reconstructed signal , and measurement matrix T = Mx FH.
- (2) Repeat steps 1. (2)–(7) to get reconstructed signal , from which we can get complete spectral matrix .
2.4. Experimental Setup for SD-OCT
3. Results and Discussion
3.1. Simulation Results
3.2. Experiment Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fercher, A.F.; Hitzenberger, C.K.; Kamp, G.; El-Zaiat, S.Y. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995, 117, 43–48. [Google Scholar] [CrossRef]
- Nassif, N.; Cense, B.; Park, B.; Pierce, M.; Yun, S.; Bouma, B.; Tearney, G.; Chen, T.; de Boer, J. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 2004, 12, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Leitgeb, R.; Hitzenberger, C.; Adolf, F. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 2003, 11, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Tearney, G.; Bouma, B.; Park, B.; Johannes, D.B. High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. Opt. Express 2003, 11, 3598. [Google Scholar] [CrossRef] [PubMed]
- Daguang, X.; Namrata, V.; Yong, H.; Kang, J.U. Modified compressive sensing optical coherence tomography with noise reduction. Opt. Lett. 2012, 37, 4209–4211. [Google Scholar] [CrossRef]
- Xuan, L.; Kang, J.U. Compressive SD-OCT: The application of compressed sensing in spectral domain optical coherence tomography. Opt. Express 2010, 18, 22010–22019. [Google Scholar] [CrossRef]
- Luo, S.; Qiang, G.; Hui, Z.; Xin, A.; Li, H. Noise Reduction of Swept Source Optical Coherence Tomography via Compressed Sensing. IEEE Photonics J. 2017, 10, 1. [Google Scholar] [CrossRef]
- Daguang, X.; Yong, H.; Kang, J.U. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography. Opt. Express 2014, 22, 14871–14884. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Li, S.; Nie, Q.; Izatt, J.A.; Toth, C.A.; Farsiu, S. Sparsity based denoising of spectral domain optical coherence tomography images. Biomed. Opt. Express 2012, 3, 927–942. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Sun, L. Full-depth compressive sensing spectral-domain optical coherence tomography based on a compressive dispersion encoding method. Appl. Opt. 2018, 57, 9316–9321. [Google Scholar] [CrossRef]
- Daguang, X.; Yong, H.; Kang, J.U. Real-time compressive sensing spectral domain optical coherence tomography. Opt. Lett. 2014, 39, 76–79. [Google Scholar] [CrossRef]
- Evgeniy, L.; Mackenzie, P.J.; Sarunic, M.V.; Mirza Faisal, B. Rapid volumetric OCT image acquisition using compressive sampling. Opt. Express 2010, 18, 21003–21012. [Google Scholar]
- Xu, D.; Huang, Y.; Kang, J.U. Volumetric (3D) compressive sensing spectral domain optical coherence tomography. Biomed. Opt. Express 2014, 5, 3921. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Lebed, E.; Jian, Y.; Mackenzie, P.J.; Beg, M.F.; Sarunic, M.V. Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography. Biomed. Opt. Express 2011, 2, 2690–2697. [Google Scholar] [Green Version]
- Ireneusz, G.; Michalina, G.; Maciej, S.; Iwona, G.; Daniel, S.; Susana, M.; Andrzej, K.; Maciej, W. Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Opt. Express 2009, 17, 4842–4858. [Google Scholar] [Green Version]
- Marks, D.L.; Ralston, T.S.; Boppart, S.A.; Scott, C.P. Inverse scattering for frequency-scanned full-field optical coherence tomography. J. Opt. Soc. Am. A 2015, 24, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Ralston, T.S.; Marks, D.L.; Carney, P.S.; Boppart, S.A. Interferometric synthetic aperture microscopy. Nat. Phys. 2007, 3, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.J.; Schlachter, S.C.; Marks, D.L.; Ralston, T.S.; Boppart, S.A.; Scott, C.P. Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy. J. Opt. Soc. Am. A 2007, 24, 2527. [Google Scholar] [CrossRef]
- Yang, X.; Kai Benjamin, C.X.; Adie, S.G.; Boppart, S.A.; Scott, C.P. Multifocal interferometric synthetic aperture microscopy. Opt. Express 2013, 22, 16606–16618. [Google Scholar]
- Xu, Y.; Liu, Y.Z.; Boppart, S.A.; Scott, C.P. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography. Appl. Opt. 2016, 55, 2034. [Google Scholar] [CrossRef]
- Wachulak, P.; Bartnik, A.; Fiedorowicz, H. Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source. Sci. Rep. 2018, 8, 8494. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Sun, L.; Ding, W. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth. J. Biomed. Opt. 2017, 22, 106016. [Google Scholar]
- Davis, B.J.; Marks, D.L.; Ralston, T.S.; Carney, P.S.; Boppart, S.A. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy. Sensors 2008, 8, 3903–3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
System Parameters | Specification |
---|---|
Axial resolution (air/tissue) | 8.79 μm/6.85 μm |
Optical power of light source | 6 mW |
Theoretical maximum imaging depth (air/tissue) | 3.25 × 2 mm/2.24 × 2 mm |
Maximum imaging width | 13.8 mm |
Working distance of sample arm | 15.4 mm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, L.; Sun, L.; Guo, X.; Hou, B. Combination of 2D Compressive Sensing Spectral Domain Optical Coherence Tomography and Interferometric Synthetic Aperture Microscopy. Appl. Sci. 2019, 9, 4003. https://doi.org/10.3390/app9194003
Yi L, Sun L, Guo X, Hou B. Combination of 2D Compressive Sensing Spectral Domain Optical Coherence Tomography and Interferometric Synthetic Aperture Microscopy. Applied Sciences. 2019; 9(19):4003. https://doi.org/10.3390/app9194003
Chicago/Turabian StyleYi, Luying, Liqun Sun, Xiangyu Guo, and Bo Hou. 2019. "Combination of 2D Compressive Sensing Spectral Domain Optical Coherence Tomography and Interferometric Synthetic Aperture Microscopy" Applied Sciences 9, no. 19: 4003. https://doi.org/10.3390/app9194003
APA StyleYi, L., Sun, L., Guo, X., & Hou, B. (2019). Combination of 2D Compressive Sensing Spectral Domain Optical Coherence Tomography and Interferometric Synthetic Aperture Microscopy. Applied Sciences, 9(19), 4003. https://doi.org/10.3390/app9194003