Polymers and Polymer Nanocomposites for Cancer Therapy †
Abstract
:1. Introduction
2. Synthetic Polymers and Polymer Nanocomposites
3. Biopolymers and Biopolymer Nanocomposites
- (a)
- agro-polymers based on the biomass of agro-resources as raw materials (e.g., starch and cellulose);
- (b)
- polymers based on microbial production (e.g., polyhydroxyalkanoates),
- (c)
- polymers that are synthesized by using biomass-based monomers (e.g., PLA) [34].
4. Polymer Micelles
5. Polymer Hydrogels and Nanogels
- -
- Through H bonds (example: PAA with PEG);
- -
- From an amphiphilic graft and a block copolymer;
- -
- With PLA and PEG;
- -
- With poly(butylene terephthalate) and PEG;
- -
- With hydrophobized polysaccharides and others [88].
6. Polymersomes and Liposomes
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
AA | Algae, alginate |
ART | Artenisimin drug |
AS | Alphastatin drug |
b | Block (for copolymer) |
BPLP | Biodegradable photoluminescent polymer |
co | (For copolymer) |
CA | Candesartan drug |
CPP | Cyclocarya paliurus polysaccharide |
CS | Chitosan |
CSC | Cancer stem cell |
CUR | Curcumin |
DGMNs | Dextran goldmag nanoparticles |
DMTK | Dimethylthiotekal |
DNA | Deoxyribonucleic acid |
DOX | Doxorubicyn or Addryamicine drug |
DPA | 3,3′ didithiodipropionic acid |
DTX | Docetaxel drug |
DVA | 9 divinyl-2,4,6,8,10-tetraoxispirol-(5,5′) undecane |
ELP | Elastin-like polypeptide |
FA | Folic acid |
FU | Fluorouracil drug |
GM | Goldmag (Au/Fe₃O₄) |
GRP | Gastrin-releasing peptide |
HA | Hyaluronic acid |
HAP | Hydroxy apatite |
HCC | Hepatocellular carcinoma |
HCCs | Hepatocellular carcinoma cells |
HCPT | 10-hydroxylamptothain |
I | 3-amino-2 phenyl-4(3H)-quinazoline |
IA | Itaconic acid |
ICG | Indocianine green |
LA | Lipoic acid |
MCM-41 | Misoporous nanostructured silica |
MMA | Methacrylic acid |
MRI | Magnetic resonance imaging |
MTT | [3-(4,5-dimethyl-2thiazolyl)-2,5 diphenyl-2H-tetrazolium bromide)] assay |
MW | Molecular weight |
MWCNT | Multiwall carbon nanotube |
mPEG-PLA | Metoxy diblock copolymer PEG-PLA |
NIR | Near-infrared |
Nms | Nanomicelles |
nAg | Nanosilver particles |
nAu | Nanogold particles |
nFe3O4 | Nano-iron oxide particles |
nSi | Silica nanoparticles |
PAA | Poly(acrylic acid) |
PAQx | Poly(alkyl-2-oxazoline) |
PB | Polybutadiene |
PCL | Polycaprolactone |
PDT | Photodynamic therapy |
PEE | Poly(ethyl ethylene) |
PEG | Poly(ethylene glycol) |
PEGDA | PEG double acrylate |
PEGMA | PEG methacrylate |
PEI | Poly(ethylene imine) |
PEO | Poly(ethylene oxide) |
Ύ-PGA | Poly(γ-glutamic acid) |
PHEA | α,ß-poly(hydroxyethyl)-DL-aspartamide |
PLA | Poly(lactic acid) |
PLGA | Poly(D,L-lactide-co-glycolic acid) |
PnBA | Poly(n-butyl acrylate) |
PNAm | Poly(N-acryloyl glycinamide-co-acrylamide) |
PP | Polypirrol |
PS | Polystyrene |
PTT | Photothermal therapy |
PTX | Paclitaxel drug |
PU | Polyurethane |
PURs | Polyester/ether urethane |
PVA | Poly(vinyl alcohol) |
PVL | Poly(δ-valerolactone) |
PVP | Poly(vinyl pyrolidone)) |
P(3HB) | Poly(3-hydroxy butyrate) |
Qd | Quantum dot |
RNA | Ribonucleic acid |
SCF | Enzyme-free simulated caloric fluid |
SGF | Enzyme-free simulated gastric fluid |
SS | Disulfide bond |
St | Starch |
SUC | Succinate |
References
- Chaudhary, Z.; Ahmed, N.; ur Rehman, A.; Khan, G.M. Lipid polymer hybrid carrier systems for cancer targeting: A review. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 86–100. [Google Scholar] [CrossRef]
- Siegel, R.I.; Miller, K.D.; Jemal, A. Cancer Statistics 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Li, N.; Zhao, L.; Qi, L.; Li, Z.; Luan, Y. Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog. Polym. Sci. 2016, 58, 1–26. [Google Scholar] [CrossRef]
- Thakur, S.; Pramod, K.S.; Malviya, R. Utilization of Polymeric Nanoparticle in Cancer Treatment. A Review. J. Pharm. Care Health Syst. 2017, 4. [Google Scholar] [CrossRef]
- Seifu, M.F.; Nath, L.K. Polymer drug conjugates; Novel carrier for cancer chemotherapy. Polym. Plast. Technol. Mater. 2019, 58, 158–171. [Google Scholar] [CrossRef]
- Wagner, A.M.; Spencer, D.S.; Peppas, N.A. Advanced architectures in the design of responsive polymers for cancer nanomedicine. J. Appl. Polym. Sci. 2018, 135. [Google Scholar] [CrossRef]
- Patra, A.; Satpathy, S.; Shenoy, A.K.; Bushy, J.A.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomed. 2018, 13, 2809–2881. [Google Scholar]
- Sabzichi, M.; Hamishehkar, H.; Ramezani, F.; Sharifi, S.; Tabasinezhad, M.; Pirouzpanah, M.; Ghanbari, P.; Samadi, N. Luteolin-loaded phytosomes sensitive human breast carcinoma MDA-MB 231 cells to Doxorubicin by suppresing Nrf2 mediated signalling. Asian Pac. J. Cancer Prev. 2014, 15, 5311–5316. [Google Scholar] [CrossRef]
- Kumar, S.; Sarita, N.M.; Dilbaghi, N.; Tankeshwar, K. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 2018, 80, 1–38. [Google Scholar] [CrossRef]
- Honey, P.G.; Rijo, J.; Anju, A.; Anoop, K.R. Smart polymers for the controlled delivery of drugs—A concise overview. Acta Pharm. Sin. B 2014, 4, 120–127. [Google Scholar]
- Cuggino, J.C.; Molina, M.; Wedepohl, S.; Igarzabal, C.I.A.; Calderon, M.; Gugliotta, L.M. Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery system. Eur. Polym. J. 2016, 78, 14–24. [Google Scholar] [CrossRef]
- Carraher, C.E., Jr.; Roner, M.R.; Campbell, A.G.; Moric-Johnson, A.; Miller, L.; Slawek, P.; Mosca, F. Group IVB metallocene polyesters containing camphoric acid and preliminary cancer cellactivity. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 469–479. [Google Scholar] [CrossRef]
- Zou, H.; Liu, H. Synthesis of thermal and photo dual-responsive amphiphilic random copolymer via atom transfer radical polymerization and its control release of doxorubicin. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 955–962. [Google Scholar] [CrossRef]
- Massoumi, B.; Poorgholy, N.; Jaymand, M. Multistimuli responsive polymeric nanosystems for theranostic applications. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 38–47. [Google Scholar] [CrossRef]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery system for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef]
- Li, L.; Yang, W.-W.; Xu, D.-G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target. 2019, 27, 423–433. [Google Scholar] [CrossRef]
- Mattu, C.; Silvestri, A.; Wang, T.R.; Boffito, M.; Ranzato, E.; Cassino, C.; Ciofani, G.; Ciardelli, G. Surface functionalized polyurethane nanoparticles for targeted cancer therapy. Polym. Int. 2016, 65, 770–779. [Google Scholar] [CrossRef]
- Orum, S.M.; Demircoglu, Y.S. One-pot synthesis and characterization of crosslinked polyphosphazene dopamine microspheres for controlled drug delivery applications. J. Macromol. Sci. Part A 2019. [Google Scholar] [CrossRef]
- Khan, M.A.; Raza, A.; Ovais, M.; Sohail, M.F.; Ali, S. Current state and prospects of nano-delivery systems for sorafenib. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 1105–1115. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, Y.; Xiang, Y.; Shu, M.; Chen, H.; Yang, B.; Liao, X. Polyurethane/doxorubicin nanoparticles based on electrostatic interactions as pH-sensitive drug delivery carriers. Polym. Int. 2018, 67, 1186–1193. [Google Scholar] [CrossRef]
- Liang, P.; Wang, C.-Q.; Chen, H.; Zhuo, R.-X.; Cheng, S.-X. Multi-functional heparin-biotin/heparin/calcium phosphate nanoparticles for targeted co-delivery of gene and drug. Polym. Int. 2015, 64, 647–653. [Google Scholar] [CrossRef]
- Di Mascolo, D.; Basnett, P.; Palange, A.L.; Francardi, M.; Roy, I.; Decuzzi, P. Tuning core hydrophobicity of spherical polymeric nanoconstructs for docetaxel delivery. Polym. Int. 2016, 65, 741–746. [Google Scholar] [CrossRef]
- Li, X.; Kono, K. Functional dendrimer-gold nanoparticle hybrids for biomedical applications. Polym. Int. 2018, 67, 840–852. [Google Scholar] [CrossRef]
- Lipowska-Kur, D.; Szweda, R.; Trzebicka, B.; Dworak, A. Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. Eur. Polym. J. 2018, 109, 391–401. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Tehrani, Z.M.; Bennett, C. PEG-co-poly (vinyl pyridine) coated magnetic mesoporous silica nanoparticles for pH-responsive controlled release of Doxorubicin. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 570–577. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Tehrani, Z.M. Poly(N-isopropylacrylamide)-coated β-cyclodextrin-capped magnetic mesoporous silica nanoparticles exhibiting thermal and pH dual response for triggered anticancer drug delivery. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 336–348. [Google Scholar] [CrossRef]
- Rafi, A.A.; Fakheri, F.; Mahkam, M. Synthesis and preparation of new pH-sensitive nanocomposite based on MCM-41/poly(methacrylic acid ) as drug carriers. Polym. Bull. 2016, 73, 2649–2659. [Google Scholar] [CrossRef]
- Su, T.; Cheng, F.; Lin, S.; Xiao, T.; Zhu, Y.; Cao, J.; He, B. Reduction-induced decomposition and self-aggregation strategy to induce reactive oxygen species for cancer therapy. ACS Appl. Biomater. 2018, 1, 954–960. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, M.; Han, L.; Song, Y.; Yuan, S.; Zhang, Y.; Wu, Z.; Qi, X. Surface partially neutralized dendtric polymer demonstrating proton-triggered self-assembled aggregation for tumor therapy. Eur. Polym. J. 2018, 103, 59–67. [Google Scholar] [CrossRef]
- Bonadies, I.; Maglione, L.; Ambrogi, V.; Paccez, J.D.; Zerbini, L.F.; de Silva, L.F.R. Electrospun core/shell nanofibers as designed devices for efficient Artemisinin delivery. Eur. Polym. J. 2017, 89, 211–220. [Google Scholar] [CrossRef]
- Zaaeri, F.; Khoobi, M.; Rouini, M.; Javar, H.A. pH -responsive polymer in a core-shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 967–977. [Google Scholar] [CrossRef]
- Palao-Suay, R.; Gomez-Mascaraque, L.G.; Aguilar, M.R.; Vazquez-Lasa, B.; San Roman, J. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog. Polym. Sci. 2016, 53, 207–248. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Ali, D.M.; Kathiresan, K.; Wang, M.H. Antimicrobial, anticancer drug carrying properties of biopolymers-based nanocomposites-a mini review. Curr. Pharm. Des. 2018, 24, 3859–3866. [Google Scholar] [CrossRef]
- Mousa, M.H.; Dong, Y.; Davies, I.J. Recent advances in bionanocomposites; preparation, properties and applications. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 225–254. [Google Scholar] [CrossRef]
- Sionkowska, A. Biopolymeric nanocomposites for potential biomedical applications. Polym. Int. 2016, 65, 1123–1131. [Google Scholar] [CrossRef]
- Li, M.; Ding, J.; Tao, Y.; Shi, B.; Chen, J.-H. Polysaccharides for biomedical applications. Int. J. Polym. Sci. 2019, 7841836. [Google Scholar] [CrossRef]
- Mittal, H.; Ray, S.S.; Kaith, B.S.; Bathia, J.K.; Sukriti Sharma, J.; Alhassan, S. Recent progress in the structural modification of chitosan for application in diversified biomedical fields. Eur. Polym. J. 2018, 109, 402–434. [Google Scholar] [CrossRef]
- Zarouni, M.; Salehi, R.; Akbazardeh, A.; Samadi, N.; Davaran, S.; Ramezani, F.; Dariushnejad, H. Biocompatible polymer coated paramagnetic nanoparticles for Doxorubicin delivery: Synthesis and anticancer effects against human breast cancer cells. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 718–726. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Y.; Zhou, Y.; Guo, D.; Fan, Y.; Guo, D.; Fan, Y.; Guo, F.; Zheng, Y.; Chen, W. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J. Pharm. Sci. 2017, 12, 418–423. [Google Scholar] [CrossRef]
- Gooneh-Farahani, S.; Naimi-Jamal, M.R.; Naghib, S.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications;a review. Expert Opin. Drug deliv. 2019, 16, 79–99. [Google Scholar] [CrossRef]
- Debnath, D.; Lee, Y.; Geckeler, K.E. Biocompatible polymers as a tool for the synthesis of silver nanoparticles: Size tuning and in vitro cytotoxicity study. Polym. Int. 2017, 66, 512–520. [Google Scholar] [CrossRef]
- Salahuddin, N.; Elbarbary, A.A.; Alkabes, H.A. Antibacterial and anticancer activity of loaded quinazolinone polypyrrole/chitosan /silver chloride nanocomposite. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 307–316. [Google Scholar] [CrossRef]
- de Moraes Profirio, D.; Pessine, F.B.T. Formulation of functionalized PLGA nanoparticles with folic acid-conjugated chitosan for carboplatin encapsulation. Eur. Polym. J. 2018, 108, 311–321. [Google Scholar] [CrossRef]
- Garcia-Couce, J.; Bada-Rivero, N.; Hernandez, O.D.L.; Nogueira, A.; Caracciolo, P.C.; Abraham, G.A.; Hernández, J.A.R.; Peniche, C. Dexamethasone-loaded chitosan beades coated with a pH dependent interpolymer complex for colon specific drug delivery. Int. J. Polym. Sci. 2019, 2019, 4204375. [Google Scholar] [CrossRef]
- Amin, A.; Kandil, H.; Awad, H.M.; Ismail, M.N. Preparation and characterization of chitosan-hydroxyapatite-glycopolymer/Cloisite 30 B nanocomposite for biomedical applications. Polym. Bull. 2015, 72, 1497–1513. [Google Scholar] [CrossRef]
- Prusty, K.; Swain, S.K. Nanostructured chitosan composites for cancer therapy: A review. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 879–888. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, X.; Cheng, X.; Wang, J.; Tang, R. In vitro and in vivo antitumor study of folic acid-conjugated carboxymethyl chitosan and phenylboronic acid-based nanoparticles. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 495–506. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y. Alphastatin-loaded chitosan nanoparticle preparation and its antiangiogenic effect on lung carcinoma. Int. J. Polym. Sci. 2019, 2019. [Google Scholar] [CrossRef]
- Chang, P.-H.; Sekine, K.; Chao, H.-M.; Hsu, S.-H.; Chern, E. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Sugita, P.; Ambarsari, L. Lidiniyah, Optimization of ketoprofen-loaded chitosan nanoparticle ultrasonication process. Procedia Chem. 2015, 16, 673–680. [Google Scholar] [CrossRef]
- Lee, E.; Park, S.J.; Lee, J.H.; Kim, M.S.; Kim, C.-H. Preparation of chitosan-TPP nanoparticles and their physical and biological properties. Asian J. Pharm. Sci. 2016, 11, 166–167. [Google Scholar] [CrossRef]
- Savin, C.-L.; Popa, M.; Delaite, C.; Costuleanu, M.; Costin, D.; Peptu, C.A. Chitosan grafted-poly (ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab. Mater. Sci. Eng. C 2019, 98, 843–860. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lv, F.; Gan, Y.; Gu, J.; Que, T. Anticancer effects of Cyclocarya paliurus polysaccharide (CPP) on thyroid carcinoma in vitro and in vivo. Int. J. Polym. Sci. 2018, 2768120. [Google Scholar] [CrossRef]
- Raveendran, R.; Mullen, K.M.; Wellard, R.M.; Sharma, C.P.; Hoogenboom, R.; Dargaville, T.R. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. Eur. Polym. J. 2017, 93, 682–694. [Google Scholar] [CrossRef]
- Saikia, C.; Das, M.K.; Ramteke, A.; Maji, T.K. Controlled release of curcumin from thiolated starch-coated iron oxide magnetic nanoparticles: An in vivo evaluation. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 349–358. [Google Scholar] [CrossRef]
- Lachowicz, D.; Karabasz, A.; Bzowska, M.; Szuwarzynski, M.; Karewicz, A.; Nowakowska, M. Blood-compatible, stable micelles of sodium alginate-curcumin bioconjugate for anti-cancer applications. Eur. Polym. J. 2019, 113, 208–219. [Google Scholar] [CrossRef]
- Song, Z.; Zhu, W.; Yang, F.; Liu, N.; Feng, R. Preparation, characterization, in vitro release and pharmacokinetic studies of curcumin-loaded mPEG-PVL nanoparticles. Polym. Bull. 2015, 72, 75–91. [Google Scholar] [CrossRef]
- Petrov, P.D.; Yoncheva, K.; Gancheva, V.; Konstantinov, S.; Trzebicka, B. Multifunctional block copolymer nanocarriers for co-delivery of silver nanoparticles and curcumin: Synthesis and enhanced efficacy against tumor cells. Eur. Polym. J. 2016, 81, 24–33. [Google Scholar] [CrossRef]
- Medel, S.; Syrova, Z.; Kovacik, L.; Hrdy, J.; Hornacek, M.; Jager, E.; Hruby, M.; Lund, R.; Cmarko, D.; Stepanek, P.; et al. Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. Eur. Polym. J. 2017, 93, 116–131. [Google Scholar] [CrossRef]
- Spiridov, A.P.; Osminkina, L.A.; Kharin, A.Yu.; Gongalsky, M.B.; Kargina, J.V.; Kudryavtsev, A.A.; Bezsudnova, Y.I.; Perova, T.S.; Geloen, A.; Lysenko, V.; et al. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology 2017, 28. [Google Scholar] [CrossRef]
- Icart, L.P.; Santos, E.R.F.; Aguero, L.; Andrade, L.R.; de Souza, C.Z.; d’Avila, L.A.; Zaldivar, D.; Dias, M.L. Paclitaxel-loaded PLA/PEG/fluorescein anticancer agent prepared by Ugi reaction. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 776–782. [Google Scholar] [CrossRef]
- Hosseini, L.; Mahboobnia, K.; Irani, M. Fabrication of PLA/MWCNT/Fe3O4 composite nanofibers for leukemia cancer cells. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 176–182. [Google Scholar] [CrossRef]
- Li, X.B.; Li, N.; Kastytis, S.; Li, H.; Zhang, C.; Peng, M.; Zhang, Q.; Hua, K.; Guo, L.; Li, F.; et al. Doxorubicin-loaded dextran-modified goldmag nanoparticles for targeting hepatocellular carcinoma. J. Biomed Nanotechnol. 2018, 14, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.-T.; Liu, T.-I.; Chiu, H.-C.; Chiang, W.-H. DOX/ICG-carrying γ-PGA-g-PLGA- based polymeric nanoassemblies for acid-triggered DOX release combined with NIR-activated photothermal. Eur. Polym. J. 2019, 110, 283–292. [Google Scholar] [CrossRef]
- Manivasagan, P.; Bharathiraja, S.; Moorthy, M.S.; Oh, Y.-O.; Seo, H.; Oh, J. Marine biopolymer-based nanomaterials as a novel platform for theranostic applications. Polym. Rev. 2017, 57, 631–667. [Google Scholar] [CrossRef]
- Helaly, F.M.; El Nashar, D.E.; Khalaf, A.I.; Abdelhamid, H.F.; Wietrzyk, J.; Psurski, M.; Soliman, A. Slow-release nanopolymeric biodegradable composites holding doxorubicin and evaluation its antiproliferative potency on cancer. Polym. Compos. 2017, 38, E34–E41. [Google Scholar] [CrossRef]
- Quinones, J.P.; Jokinen, J.; Keinanen, S.; Covas, C.P.; Bruggemann, O.; Ossipov, D. Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drug. Eur. Polym. J. 2018, 99, 384–393. [Google Scholar] [CrossRef]
- Brzezinski, M.; Wedepohl, S.; Kost, B.; Calderon, M. Nanoparticles from supramolecular polylactides overcome drug resistance of cancer cells. Eur. Polym. J. 2018, 109, 117–123. [Google Scholar] [CrossRef]
- Chevalier, M.T.; Rescignano, N.; Martin-Saldana, S.; Gonzalez-Gomez, A.; Kenny, J.M.; Roman, J.S.; Mijangos, C.; Álvarez, V.A. Non-covalently coated biopolymeric nanoparticles for improved tamoxifen delivery. Eur. Polym. J. 2017, 95, 348–357. [Google Scholar] [CrossRef]
- Chen, H.; Ruckenstein, E. Micellar Structures in Nanoparticle-Multiblock Copolymer. Langmuir 2014, 30, 3723–3728. [Google Scholar] [CrossRef]
- Wu, C.; Yang, J.; Xu, X.; Gao, C.; Lu, S.; Liu, M. Redox-responsive core-cross-linked mPEGylated starch micelles as nanocarriers for intracellular anticancer drug release. Eur. Polym. J. 2016, 83, 230–243. [Google Scholar] [CrossRef]
- Hoang, N.H.; Lim, C.; Sim, T.; Lee, E.S.; Youn, Y.S.; Kim, D.; Oh, K.T. Characterization of a triblock copolymer, poly(ethylene glycol)-polylactide-poly(ethylene glycol), with different structures for anticancer drug delivery applications. Polym. Bull. 2017, 74, 1595–1609. [Google Scholar] [CrossRef]
- Guo, Q.; Guan, D.; Dong, B.; Nan, F.; Zhang, Y. Charge-conversional binary drug delivery polymeric micelles for combined chemotherapy of cervical cancer. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 978–987. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, L.; Xiang, R.; Wan, Y.; Pan, X.; Zheng, L. Polymeric micelles with photo-activated proton release behavior for enhanced tumor extracellular pH targeting and drug release. Eur. Polym. J. 2017, 96, 69–78. [Google Scholar] [CrossRef]
- Zamani, M.; Rostamizadeh, K.; Manjili, H.K.; Danafar, H. In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery. Eur. Polym. J. 2018, 103, 260–270. [Google Scholar] [CrossRef]
- Mishra, P.; Dey, R.K. Developement of docetaxel-loaded PEG-PLA nanoparticles using surfactant-free method for controlled release studies. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 535–542. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Cao, Y.; Wu, Y.; Chen, J.; Ni, C. Studies on preparation and pH/redox responsiveness of zwitterionic nanomicelles of poly[lysine-co-N, N-bis(acryloyl) cystamine -co-dodecylamine]. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 528–534. [Google Scholar] [CrossRef]
- Rooj, B.; Mandal, U. Study carbon dots in micellar media. Med. Anal. Chem. Int. J. 2019, 3. [Google Scholar] [CrossRef]
- Volsi, A.L.; Fiorica, C.; D’Amico, M.; Scialabba, C.; Palumbo, F.S.; Giammona, G.; Licciardi, M. Hybrid gold/silica/quantum dots supramolecular-nanostructures encapsulated in polymeric micelles as potential theranostic tool for targeted cancer therapy. Eur. Polym. J. 2018, 105, 38–47. [Google Scholar] [CrossRef]
- Xue, Y.; Tian, J.; Xu, L.; Liu, Z.; Shen, Y.; Zhang, W. Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. Eur. Polym. J. 2019, 110, 344–354. [Google Scholar] [CrossRef]
- He, C.; Yang, Q.; Tan, L.; Liu, B.; Zhu, Z.; Gong, B.; Yu, M.S.; Shao, Z.F. Design and synthesis of redox and oxidative dual responsive block copolymer micelles for intracellular drug delivery. Eur. Polym. J. 2016, 85, 38–52. [Google Scholar] [CrossRef]
- Picos-Corales, L.A.; Garcia-Carrasco, M.; Licea-Claverie, A.; Chavez-Santoscoy, R.A.; Serna-Saldivar, S.O. NIPAAm-containing amphiphilic block copolymers with tailored LCST:aggregation behavior, cytotoxicity and evaluation as carriers of indomethacin, tetracycline and doxorubicin. J. Macrom. Sci. Part A 2019. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Zhao, Y.; Liu, H.; Zhao, Y.; Li, X.; Lin, Q. Biodegradable micelles for NIR/GSH –triggered chemotherapy of cancer. Nanomaterials 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Alsuraifi, A.; Curtis, A.; Lamprou, D.A.; Hoskins, C. Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics 2018, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, Y.; Eldi, P.; Guo, X.; Hayball, J.D.; Garg, S.; Albrecht, H. Targeting prostate cancer cells with hybrid elasti-like polypeptide/liposome nanoparticles. Int. J. Nanomed. 2018, 2018, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Vazquez, D.; Cajero-Zul, L.R.; Torres-Avalos, J.A.; Sandoval-Garcia, K.; Cortes-Ortega, J.A.; Lopez-Dellamary, F.A.; Soltero-Martínez, J.F.A.; Martínez-Richa, A.; Nuno-Donlucas, S.M. Homogeneous hydrogels made with acrylic acid, acrylamide and chemically functionalized carbon nanotubes. J. Macromol. Sci. Part A 2019. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel:preparation, characteriztion, and applications; a review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of synthesis of hydrogels. A Review. Saudi Pharm. J. 2016, 24, 554–559. [Google Scholar] [CrossRef]
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Targ. Ther. 2018, 3, 7. [Google Scholar] [CrossRef]
- Haq, M.A.; Su, Y.; Wang, D. Mechanical properties of PNIPAM based hydrogels:a review. Mat. Sci. Eng. C 2017, 70, 842–855. [Google Scholar] [CrossRef]
- Del Valle, L.J.; Diaz, A.; Puiggali, J. Hydrogels for biomedical applications:cellulose, chitosan and protein/peptide derivatives. Gels 2017, 3, 27. [Google Scholar] [CrossRef]
- Furuike, T.; Komoto, D.; Hashimoto, H.; Tamura, H. Preparation of chitosan hydrogel and its solubility in organic acids. Int. J. Biolog. Macromol. 2017, 104, 1620–1625. [Google Scholar] [CrossRef]
- Abou Taleb, M.F.; Alkahtani, A.; Mohamed, S.K. Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels; a drug delivery system for liver cancer. Polym. Bull. 2015, 72, 725–742. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [PubMed]
- El Nemr, A.; Serag, E.; El-Magharaby, A.; Fathy, S.A.; Abdel Hamid, F.F. Manufacturing of pH sensitive PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites: An approach for significant drug release. J. Macromol. Sci. Part A 2019. [Google Scholar] [CrossRef]
- Abdullah, O.; Minhas, M.U.; Ahmad, M.; Ahmad, S.; Ahmad, A. Synthesis of hydrogels for combinatorial delivery of 5-fluorouracil and leucovorin calcium in colon cancer; optimization, in vitro characterization and its toxicological evaluation. Polym. Bull. 2019, 76, 3017–3037. [Google Scholar] [CrossRef]
- Rao, Z.-K.; Chen, Z.-M.; Chen, R.; Zhu, H.-Y.; Li, Y.; Liu, Y.; Hao, J.Y. Investigation of a novel thermogelling hydrogel for a versatility of drugs delivery. J. Macrom. Sci. Part A 2019, 56, 26–33. [Google Scholar] [CrossRef]
- Kim, H.S.; Yang, J.; Kim, K.; Shin, U.S. Biodegradable and injectable hydrogels as an immunosuppressive drug delivery system. Mat. Sci. Eng. C 2019, 98, 472–481. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, W.; Shi, J.; Li, J.; Chen, Z.; Zhang, Q. NIR light-triggered gelling in situ of porous silicon nanoparticles/PEGDA hybrid hydrogels for localized combinatorial therapy of cancer cells. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Birajdar, R.P.; Patil, S.B.; Alange, V.V.; Kulkarni, R.V. Electro-responsive polyacrylamide-grafted-gum ghatti copolymer for transdermal drug delivery application. J. Macromol. Sci. Part A 2019, 56, 306–315. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications;their characteristics and mechanisms behind them. Gels. 2017, 3, 6. [Google Scholar] [CrossRef]
- Tsintou, M.; Wang, C. Nanobiomaterials, Science, Developement and Evaluation; Woodhead: London, UK, 2017; pp. 87–124. [Google Scholar]
- Yuan, S.; Li, X.; Shi, X.; Lu, X. Preparation of multiresponsive nanogels and their controlled release properties. Colloid Polym. Sci. 2019, 297, 613–621. [Google Scholar] [CrossRef]
- Garcia, M.C.; Cuggino, J.C. 12. Stimulus responsive nanogels for drug delivery. In Stimuli Responsive Polymeric Nanocarriers for Drug; Makhlouf, A.S.H., Abu-Tahib, N.Y., Eds.; Woodhead Publ: London, UK, 2018; Volume 1, pp. 321–341. [Google Scholar]
- Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, I.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carrier for medical applications. Drug Deliv. 2017, 24, 539–557. [Google Scholar] [CrossRef]
- Yadav, H.K.S.; Al Halabi, N.A.; Alsalloum, G.A. Nanogels as novel drug delivery systems—A review. J. Pharm. Pharm. Res. 2017, 1, 1–8. [Google Scholar]
- Chambre, L.; Degirmanci, A.; Sanyal, R.; Sanial, A. Multi-functional nanogels as theranostic platforms: Exploiting reversible and nonreversible linkages for targeting, imaging and drug delivery. Bioconjug. Chem. 2018, 29, 1885–1896. [Google Scholar] [CrossRef]
- Pethe, A.M.; Yadav, K.S. Polymers, responsiveness and cancer therapy. Artif. Cells Nanomed. Biotechnol. 2019, 47, 395–405. [Google Scholar] [CrossRef]
- Soni, G.; Yadav, K.S. Nanogels as potential nanomedicine carrier for treatment of cancer, a mini review. Saudi Pharm. J. 2016, 24, 133–139. [Google Scholar] [CrossRef]
- Luo, Y.-L.; Zhang, X.-Y.; Fu, J.-Y.; Xu, F.; Chen, Y.-S. Novel temperature and pH dual-sensitive PNIP AM/CMCS/MWCNT semi-IPN nanohybrid hydrogels; characterization, and DOX drug release. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 398–409. [Google Scholar] [CrossRef]
- Guo, H.; Li, F.; Qiu, H.; Zheng, Q.; Yang, C.; Tang, C.; Hou, Y. Chitosan-based nanogel enhances chemotherapeutic efficacy of 10-Hydroxycamptothecin against human breast cancer cells. Int. J. Polym. Sci. 2019, 2019, 1914976. [Google Scholar] [CrossRef]
- Bardajee, G.R.; Hooshyar, Z. Thermo/pH/magnetic triple sensitive poly (N-isopropylacrylamide-co-2dimethylaminoethyl) methacrylate/ sodium alginate modified magnetic graphene oxide nanogel for anticancer drug delivery. Polym. Bull. 2018, 75, 5403–5419. [Google Scholar] [CrossRef]
- Fathi, M.; Entezami, A.A.; Arami, S.; Rashidi, M.-R. Preparation of N-isopropylacrylamide/itaconic acid magnetic nanohydrogels by modified starch as a crosslinker for anticancer drug carriers. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 541–549. [Google Scholar] [CrossRef]
- Patra, P.; Seesala, V.S.; Das, D.; Panda, A.B.; Dhara, S.; Pal, S. Biopolymeric nanogel derived from functionalized glycogen towards targeted delivery of 5-fluorouracil. Polymer 2018, 140, 122–130. [Google Scholar] [CrossRef]
- Khoee, S.; Yousefalizadeh, G.; Kavand, A. Preparation of dual-targeted redox-responsive nanogels based on pegylated sorbitan for targeted and antitumor drug delivery. Eur. Polym. J. 2017, 95, 448–461. [Google Scholar] [CrossRef]
- Khang, E.B.; Lee, G.B.; In, I.; Park, S.Y. pH sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide. Eur. Polym. J. 2018, 101, 96–104. [Google Scholar] [CrossRef]
- Miceli, E.; Wedepohl, S.; Blanco, E.R.O.; Rimondino, G.N.; Martinelli, M.; Strumia, M.; Molina, M.; Kar, M.; Calderón, M. Semi-interpenetrated denditric, dual-responsive nanogels with cytochrome corona induce controlled apoptosis in HeLa cells. Eur. J. Pharm. Biopharm. 2018, 130, 115–122. [Google Scholar] [CrossRef]
- Serrano-Medina, A.; Oroz-Parra, I.; Gomez-Resendiz, V.E.; Licea-Navarro, A.; Licea-Claverie, A.; Cornejo-Bravo, J.M. Temperature and pH sensitive core-shell nanogels as efficient carriers of doxorubicin with potential application in lung cancer treatment. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 20–26. [Google Scholar] [CrossRef]
- Poma, A.; Pei, Y.; Ruiz-Perez, L.; Rizzello, L.; Battaglia, G. Polymersomes: Synthesis and applications. In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 1964. [Google Scholar] [CrossRef]
- Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev. 2018, 47, 8572–8610. [Google Scholar] [CrossRef]
- Anajafi, T.; Mallik, S. Polymersome-based drug-delivery strategies for cancer therapeutics. Ther. Deliv. 2015, 6, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Ramezani, M.; Abnous, K.; Alibolandi, M. Biocompatible polymersomes-based cancer theranostics:towards multifunctional nanomedicine. Int. J. Pharm. 2017, 519, 287–303. [Google Scholar] [CrossRef]
- de Kruijff, R.M.; Raave, R.; Kip, A.; Molkenboer-Koenen, J.; Roobol, S.J.; Essers, J. Elucidating the influence of tumor presence on the polymersome circulation time in mice. Pharmaceutics 2019, 11, 241. [Google Scholar] [CrossRef]
- Aibani, N.; Nesbitt, H.; Marino, N.; Jurek, J.; O’Neill, C.; Martin, C.; Bari, I.D.; Sheng, Y.; Logan, K.; Hawthorne, S.; et al. Electroneutral polymersomes for combined cancer chemotherapy. Acta Biomater. 2018, 80, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Zhang, P.-Y. Polymersomes in Nanomedicine–A Review. Curr. Nanosci. 2017, 13, 124–129. [Google Scholar] [CrossRef]
- Manaia, E.B.; Abucafy, M.P.; Chiari-Andreo, B.G.; Silva, B.L.; Oshiro, J.A., Jr.; Chiavacci, L.A. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed. 2017, 12, 4991–5011. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Karimi, N.; Safaei, M. Applications of various types of liposomes in drug delivery systems. Adv. Pharm. Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, K. Combination Strategies for targeted delivery of nanoparticles for cancer therapy. In Applications of Targeted Nano Drugs and Delivery Systems: Nanoscience; Mohapatra, S., Ranjan, S., Eds.; Elsevier: New York, NY, USA, 2018; pp. 191–219. [Google Scholar]
- Poy, D.; Shahemabadi, H.E.; Akbarzadeh, A.; Moradi-Sardareh, H.; Ebrahimifar, M. Carboplatin liposomal nanoparticles; preparation,characterization, and cytotoxicity effects on lung cancer in vitro environment. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 367–370. [Google Scholar] [CrossRef]
- Foroud, N.; Ardjmand, M.; Heidarinasab, A.; Akbarzadeh, A. Delivery of cisplatin by folic acid -targeted liposomal nanoparticles into liver cancer cell line. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 865–872. [Google Scholar] [CrossRef]
- Yadav, D.; Sandeep, K.; Pandey, D.; Dutta, R.K. Liposomes for drug delivery. J. Biotechnol. Biomater. 2017, 7. [Google Scholar] [CrossRef]
Macromolecular Carrier | Carrier Structure | Carrier Morphology | Experimented Drug | Reference |
---|---|---|---|---|
Polyurethane | Synthetic | Homopolymer | DOX | [20] |
Poly(ethylene glycolco-poly(vinylpyridine)/ nSi | Synthetic copolymer | Nanocomposite | DOX | [25] |
Poly(methylmethacrylate- comicroporous Si | Synthetic copolymer | Nanocomposite | Naproxen | [27] |
Chitosan-copoly(methylmethacrylate)/Fe₃O₄ | Bio-co-synthetic copolymer | Nanocomposite | DOX/HCl | [38] |
Folic Acid-Chitosanco-poly(d,l- lactic acidco-glycolic acid) | Biopolymers | Nanocomposite | Carboplatin | [43] |
Chitosan-gpoly(ethylene glycol methacrylate) | Graft copolymer | Nanocomposite | Bevacizumab | [52] |
Starch-cellulose acetate-co-acrylate | Biodegradable blend | Nanocomposite | DOX | [66] |
Macromolecular Carrier | Carrier Structure | Carrier Morphology | Experimented Drug | Reference |
---|---|---|---|---|
mPoly(ethylene glycol)- Starch-dithiopropionicacid | Core cross-linked polymers | Micelles | DOX | [71] |
Poly(ethylene glycol)-copoly(lactic acid)-co-Poly(ethylene glycol | Triblock copolymer | Micelles | DOX | [72] |
Poly(ethylene glycol-copoly(d,l-lactide) | Diblock copolymer | Micelles | DTX | [76] |
Sodium/chitosan/hydroxyl apatite | Nanocomposite | Hydrogel | DOX | [93] |
Hyaluronic acid-calcium-Algae | Nanocomposite | Hydrogel | Cyclosporine A | [98] |
Chitosan | Biopolymer | Nanogel | HCPT | [111] |
N-isopoptylacrylamide-co-itaconic acid/Fe3O4 | Copolymer | Nanogel | Mitoxantrone | [113] |
Lecitine-cholesterolpoly(ethylene glycol) | Polymer blend | Liposome | Carboplatin | [130] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feldman, D. Polymers and Polymer Nanocomposites for Cancer Therapy. Appl. Sci. 2019, 9, 3899. https://doi.org/10.3390/app9183899
Feldman D. Polymers and Polymer Nanocomposites for Cancer Therapy. Applied Sciences. 2019; 9(18):3899. https://doi.org/10.3390/app9183899
Chicago/Turabian StyleFeldman, Dorel. 2019. "Polymers and Polymer Nanocomposites for Cancer Therapy" Applied Sciences 9, no. 18: 3899. https://doi.org/10.3390/app9183899
APA StyleFeldman, D. (2019). Polymers and Polymer Nanocomposites for Cancer Therapy. Applied Sciences, 9(18), 3899. https://doi.org/10.3390/app9183899