Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bitumen
2.2. Preparation of Atomic Force Microscopes (AFM) Samples
2.3. Atomic Force Microscope (AFM) Test Conditions and Methods
2.4. Test Methods
2.4.1. Analysis Nano-Morphological Characteristics of Bitumen
2.4.2. Nano-Morphological Parameters
3. Nano-Morphological Parameters and Technical Indexes of Aged Bitumen
3.1. Nano-Morphological Parameters Test Results of Aged Bitumen
3.2. Relation Between Nano-Morphological Parameters and Technical Indexes of Bitumen After Ageing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cuciniello, G.; Leandri, P.; Filippi, S.; Presti, D.L.; Losa, M.; Airey, G. Effect of ageing on the morphology and creep and recovery of polymer-modified bitumens. Mater. Struct. 2018, 51, 136. [Google Scholar] [CrossRef] [Green Version]
- Bressi, S.; Carter, A.; Bueche, N.; Dumont, A.G. Impact of different ageing levels on binder rheology. Int. J. Pavement Eng. 2016, 17, 403–413. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, Z.; Zhang, Y.; Hu, K.; Ding, L.; Wang, F. The effect of direct-to-plant styrene-butadiene-styrene block copolymer components on bitumen modification. Polymers 2019, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Nare, K.; Hlangothi, S.P. Thermorheological evaluation of antiaging behavior of four antioxidants in 70/100 bitumen. J. Mater. Civ. Eng. 2019, 31, 04019034. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Wang, D.; Porot, L.; Hofko, B. Impact of asphalt aging temperature on chemo-mechanics. RSC Adv. 2019, 9, 11602–11613. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Wang, Y.; Yu, J.; Xu, S. A strain-hardening cementitious composites with the tensile capacity up to 8%. Constr. Build. Mater. 2017, 137, 410–419. [Google Scholar] [CrossRef]
- Yu, X.; Zaumanis, M.; Dos Santos, S.; Poulikakos, L.D. Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 2014, 135, 162–171. [Google Scholar] [CrossRef]
- Guindon, L. The Effects of minerals on heavy-oil and bitumen chemistry when recovered by steam-assisted methods. J. Can. Petrol. Technol. 2015, 54, 15–17. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, Z.; Wang, F. Effect and prediction of aromatic oil on swelling degree of direct-to-plant SBS modifier in bitumen. Petrol. Sci. Technol. 2019, 37, 1033–1040. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, L.; Jia, Z. Design of SBS-modified bitumen stabilizer powder based on the vulcanization mechanism. Appl. Sci. 2018, 8, 457. [Google Scholar] [CrossRef]
- Kumbargeri, Y.S.; Biligiri, K.P. Rational performance indicators to evaluate asphalt materials’ aging characteristics. J. Mater. Civil Eng. 2016, 28, 04016157. [Google Scholar] [CrossRef]
- Kayukova, G.P.; Vakhin, A.V.; Mikhailova, A.N.; Petrov, S.M.; Sitnov, S.A. Road bitumen’s based on the vacuum residue of heavy oil and natural asphaltite: Part I–chemical composition. Petrol. Sci. Technol. 2017, 35, 1680–1686. [Google Scholar] [CrossRef]
- Abdullin, A.I.; Idrisov, M.R.; Emelyanycheva, E. Improvement of thermal-oxidative stability of petroleum bitumen using “overoxidation–dilution” technology and introduction of antioxidant additives. Petrol. Sci. Technol. 2017, 35, 1859–1865. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.X.; Jia, Z.; Wang, F.; Ding, L. Test method and material design of asphalt mixture with the function of photocatalytic decomposition of automobile exhaust. Constr. Build. Mater. 2019, 215, 298–309. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, J.; Jia, Z. The UV anti-aging performance of TPS modified bitumen. Petrol. Sci. Technol. 2018, 36, 1164–1169. [Google Scholar] [CrossRef]
- Hung, A.M.; Fini, E.H. Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel 2019, 242, 408–415. [Google Scholar] [CrossRef]
- Zhang, H.L.; Yu, J.Y.; Feng, Z.G.; Xue, L.H.; Wu, S.P. Effect of aging on the morphology of bitumen by atomic force microscopy. J. Microsc. 2012, 246, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.P.; Pang, L.; Mo, L.T.; Chen, Y.C.; Zhu, G.J. Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Constr. Build. Mater. 2019, 23, 1005–1010. [Google Scholar] [CrossRef]
- Rashid, F.; Hossain, Z.; Bhasin, A. Nanomechanistic properties of reclaimed asphalt pavement modified asphalt binders using an atomic force microscope. Int. J. Pavement Eng. 2019, 20, 357–365. [Google Scholar] [CrossRef]
- Li, B.; Cui, Y.; Liu, X.; Li, H.; Li, X. Effect of material composition on nano-adhesive characteristics of styrene-butadiene-styrene copolymer-modified bitumen using atomic force microscope technology. Int. J. Adhes. Adhes. 2019, 89, 168–173. [Google Scholar] [CrossRef]
- Kim, H.H.; Mazumder, M.; Torres, A.; Lee, S.J.; Lee, M.S. Characterization of CRM binders with wax additives using an atomic force microscopy (AFM) and an optical microscopy. Adv. Civil Eng. Mater. 2017, 6, 504–525. [Google Scholar] [CrossRef]
- Nazzal, M.D.; Abu-Qtaish, L.; Kaya, S.; Powers, D. Using atomic force microscopy to evaluate the nanostructure and nanomechanics of warm mix asphalt. J. Mater. Civil Eng. 2015, 27, 04015005. [Google Scholar] [CrossRef]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.M.; Muller, G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J. Microsc. 1996, 182, 32–39. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Chen, Z.; Li, H. Microstructure morphologies of asphalt binders using atomic force microscopy. J. Wuhan Univ. Tech. Mater. Sci. Ed. 2016, 31, 1261–1266. [Google Scholar] [CrossRef]
- Dehouche, N.; Kaci, M.; Mouillet, V. The effects of mixing rate on morphology and physical properties of bitumen/organo-modified montmorillonite nanocomposites. Constr. Build. Mater. 2016, 114, 76–86. [Google Scholar] [CrossRef]
- Du, P.F.; Ke, N.X.; Zhang, H.L. Effect of nano-zinc oxide on the morphology and ultraviolet aging properties of various bitumens. Petrol. Sci. Technol. 2015, 33, 1110–1117. [Google Scholar] [CrossRef]
- Hofko, B.; Eberhardsteiner, L.; Füssl, J.; Grothe, H.; Handle, F.; Hospodka, M.; Grossegger, D.; Nahar, S.N.; Schmets, A.J.M.; Scarpas, A. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater. Struct. 2016, 49, 829–841. [Google Scholar] [CrossRef]
- Hung, A.M.; Fini, E.H. AFM study of asphalt binder “bee” structures: Origin, mechanical fracture, topological evolution, and experimental artifacts. RSC Adv. 2015, 5, 96972–96982. [Google Scholar] [CrossRef]
- Dai, Z.; Shen, J.; Shi, P. Influence of SBS modification on the asphalt aging based on nano-sized topography and rheological properties. Acta Petrol. Sin. 2017, 33, 578–587. [Google Scholar] [CrossRef]
- Masson, J.F.; Leblond, V.; Margeson, J. Bitumen morphologies by phase-detection atomic force microscopy. J. Microsc. 2006, 221, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Mansourkhaki, A.; Ameri, M.; Daryaee, D. Application of different modifiers for improvement of chemical characterization and physical-rheological parameters of reclaimed asphalt binder. Constr. Build. Mater. 2019, 203, 83–94. [Google Scholar] [CrossRef]
- RIOH. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG E20-2011) Beijing; China Communications Press: Beijing, China, 2011. [Google Scholar]
- Lu, H.; Ye, F.; Yuan, J.; Yin, W. Properties comparison and mechanism analysis of naphthenic oil/SBS and nano-MMT/SBS modified asphalt. Constr. Build. Mater. 2018, 187, 1147–1157. [Google Scholar] [CrossRef]
- Filippi, S.; Cappello, M.; Merce, M.; Polacco, G. Effect of nanoadditives on bitumen aging resistance: a critical review. J. Nanomater. 2018, 2018, 2469307. [Google Scholar] [CrossRef]
- Blom, J.; Soenen, H.; Katsiki, A.; Van den Brande, N.; Rahier, H.; Van den Bergh, W. Investigation of the bulk and surface microstructure of bitumen by atomic force microscopy. Constr. Build. Mater. 2018, 177, 158–169. [Google Scholar] [CrossRef]
- Teltayev, B.B.; Rossi, C.O.; Ashimova, S.Z. Composition and rheological characteristics of bitumen in short-term and long-term aging. Mag. Civil Eng. 2018, 81, 93–101. [Google Scholar] [CrossRef]
- Tarsi, G.; Varveri, A.; Lantieri, C.; Scarpas, A.; Sangiorgi, C. Effects of different aging methods on chemical and rheological properties of bitumen. J. Mater. Civil Eng. 2018, 30, 04018009. [Google Scholar] [CrossRef]
- Hofko, B.; Cannone Falchetto, A.; Grenfell, J.; Huber, L.; Lu, X.; Porot, L.; Poulikakos, L.D.; You, Z. Effect of short-term ageing temperature on bitumen properties. Road Mater. Pavement Des. 2017, 18, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Loise, V.; Vuono, D.; Policicchio, A.; Teltayev, B.; Gnisci, A.; Messina, G.; Rossi, C.O. The effect of multiwalled carbon nanotubes on the rheological behaviour of bitumen. Colloids Surf. A Physicochem. Eng. Asp. 2019, 566, 113–119. [Google Scholar] [CrossRef]
- Calandra, P.; Caputo, P.; De Santo, M.P.; Todaro, L.; Liveri, V.T.; Rossi, C.O. Effect of additives on the structural organization of asphaltene aggregates in bitumen. Constr. Build. Mater. 2019, 199, 288–297. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wang, H.A.; Hsieh, Y.F. Image matting through a Web browser. Multimed. Tools Appl. 2012, 61, 551–570. [Google Scholar] [CrossRef]
- Han, B.; Lu, G.Y.; Zhu, Z.Q.; Guo, Y.J.; Zhao, Y.W. Microstructure features of powdery coal-bearing soil based on the digital image measurement technology and fractal theory. Geotech. Geol. Eng. 2019, 37, 1357–1371. [Google Scholar] [CrossRef]
- Vlahović, M.M.; Savić, M.M.; Martinović, S.P.; Boljanac, T.Đ.; Volkov-Husović, T.D. Use of image analysis for durability testing of sulfur concrete and Portland cement concrete. Mater. Des. 2012, 34, 346–354. [Google Scholar] [CrossRef]
- Wang, M.; Liu, L.P.; Luo, D. Analysis of nanoscale evolution features of microstructure of asphalt. China J. Highw. Transp. 2017, 30, 10–16. [Google Scholar] [CrossRef]
- Yang, J.; Gong, M.; Pauli, T.; Wei, J.; Wang, X. Study on micro-structures of asphalt by using atomic force microscopy. Acta Petrolei. Sin. 2015, 31, 959–965. [Google Scholar]
- Wang, P.; Dong, Z.J.; Tan, Y.Q.; Liu, Z.Y. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy Fuels 2015, 29, 112–121. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Liu, Q.; Xie, J.; Li, H.; Dai, Y.; Li, C.; Nie, S.; Song, W. Aging effects of ultraviolet lights with same dominant wavelength and different wavelength ranges on a hydrocarbon-based polymer (asphalt). Polymer Testing 2019, 75, 64–75. [Google Scholar] [CrossRef]
- Kim, H.H.; Mazumder, M.; Lee, S.J. Micromorphology and rheology of warm binders depending on aging. J. Mater. Civil Eng. 2017, 29, 04017226. [Google Scholar] [CrossRef]
- Hou, Y.; Ji, X.; Su, X. Mechanical properties and strength criteria of cement-stabilised recycled concrete aggregate. Int. J. Pavement Eng. 2019, 20, 339–348. [Google Scholar] [CrossRef]
Test Items | Measured Value | Standard [32] | |
---|---|---|---|
Ductility at 10 °C, cm | 97.5 | ≮30 | |
Viscosity at 60 °C, Pa·s | 204.8 | ≮160 | |
Ductility at 15 °C, cm | >100 | ≮100 | |
Penetration at 25 °C, 0.1 mm | 86.6 | 80-100 | |
Density, g/cm3 | 0.998 | -- | |
Softening point, °C | 45.0 | ≯45 | |
TFOT | Residue Ductility at 15 °C, cm | 29.4 | ≮20 |
Quality loss, % | 0.1 | ±0.8 | |
Residue penetration ratio, % | 71.8 | ≮57% |
Test Conditions | Value |
---|---|
Scan size | 10 μm × 10 μm |
Temperature | 25 °C |
Samples number | 255 |
Scan rate | 2.5 Hz |
Drive amplitude | 300.00 mV |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zou, L.; Jia, Z.; Wang, F.; Li, Y.; Shi, P. Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen. Appl. Sci. 2019, 9, 3027. https://doi.org/10.3390/app9153027
Zhang W, Zou L, Jia Z, Wang F, Li Y, Shi P. Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen. Applied Sciences. 2019; 9(15):3027. https://doi.org/10.3390/app9153027
Chicago/Turabian StyleZhang, Wengang, Ling Zou, Zhirong Jia, Fang Wang, Ying Li, and Ping Shi. 2019. "Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen" Applied Sciences 9, no. 15: 3027. https://doi.org/10.3390/app9153027
APA StyleZhang, W., Zou, L., Jia, Z., Wang, F., Li, Y., & Shi, P. (2019). Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen. Applied Sciences, 9(15), 3027. https://doi.org/10.3390/app9153027