Dynamic Responses Measured by Optical Fiber Sensor for Structural Health Monitoring
Abstract
:1. Introduction
2. Optical Fiber Sensing System
3. Strain-Induced Light Intensity Variation
4. Shock and Vibration Tests
4.1. Base Excitation
4.1.1. Single Frequency Base Excitation
4.1.2. Dual Frequency Base Excitation
4.2. Impact Test
4.3. Drop Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoe, B.V.; Lee, G.; Bosman, E.; Missinne, J.; Kalathimekkad, S.; Maskery, O.; Webb, D.J.; Sugden, K.; Daele, P.V.; Steenberge, G.V. Ultra Small Integrated Optical Fiber Sensing System. Sensors 2012, 12, 12052–12069. [Google Scholar] [Green Version]
- Wang, J.-N.; Tang, J.-L. Feasibility of Fiber Bragg Grating and Long-Period Fiber Grating Sensors under Different Environmental Conditions. Sensors 2010, 10, 10105–10127. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Ren, W.X.; Bi, K.M. FBG force-testing ring for bridge cable force monitoring and temperature compensation. Sens. Actuators A Phys. 2015, 223, 105–113. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, W.; Zhang, H.; Geng, P.; Lin, W.; Liu, B.; Bai, Z.; Xue, X. Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature. Sens. Actuators B Chem. 2013, 188, 931–936. [Google Scholar] [CrossRef]
- Luyckx, G.; Voet, E.; Lammens, N.; De Waele, W.; Degrieck, J. Residual strain-induced birefringent FBGs for multi-axial strain monitoring of CFRP composite laminates. NDT E Int. 2013, 54, 142–150. [Google Scholar] [CrossRef]
- Mulle, M.; Wafai, H.; Yudhanto, A.; Lubineau, G.; Yaldiz, R.; Schijve, W.; Verghese, N. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings. Compos. Sci. Technol. 2016, 123, 143–150. [Google Scholar] [CrossRef]
- Bai, X.; Hu, M.; Gang, T.; Rong, Q. Simultaneous acoustic and magnetic measurement using cascaded fibre Bragg grating. Opt. Fiber Technol. 2018, 45, 376–382. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, H.K.; Lv, R.Q.; Gu, Y.F.; Zhao, Y.; Yang, Y. Novel integrated optical fiber sensor for temperature, pressure and flow measurement. Sens. Actuators A Phys. 2018, 280, 68–75. [Google Scholar] [CrossRef]
- Mieloszyk, M.; Ostachowicz, W. Moisture contamination detection in adhesive bond using embedded FBG sensors. Mech. Syst. Signal Process. 2017, 84, 1–14. [Google Scholar] [CrossRef]
- Vendittozzi, C.; Felli, F.; Lupi, C. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness. Opt. Fiber Technol. 2018, 42, 84–91. [Google Scholar] [CrossRef]
- Staino, A.; Basu, B.; Nielsen, S. Actuator control of edgewise vibrations in wind turbine blades. J. Sound Vib. 2012, 331, 1233–1256. [Google Scholar] [CrossRef]
- Pang, J.; Du, Y.; Wu, K.; Hu, P.; Li, W. Fatigue analysis of adhesive joints under vibration loading. J. Adhes. 2013, 89, 899–920. [Google Scholar] [CrossRef]
- Madhavan, S.; Jain, R.; Sujatha, C.; Sekhar, A. Vibration based damage detection of rotor blades in a gas turbine engine. Eng. Fail. Anal. 2014, 46, 26–39. [Google Scholar] [CrossRef]
- Rama Mohan Rao, A.; Sivasubramanian, K. Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighborhood search (MSGNS) algorithm. J. Sound Vib. 2008, 311, 133–159. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gaur, H.; Kulkarni, M.; Patil, G.; Bhattacharya, B.; Sharma, A. PZT–PDMS composite for active damping of vibrations. Compos. Sci. Technol. 2013, 77, 42–51. [Google Scholar] [CrossRef]
- Zook, J.; Herb, W.R.; Bassett, C.; Stark, T.; Schoess, J.N.; Wilson, M.L. Fiber-optic vibration sensor based on frequency modulation of light-excited oscillators. Sens. Actuators A Phys. 2000, 83, 270–276. [Google Scholar] [CrossRef]
- Andjelic, M.; Popp, K. Stability effects in a normal triangular cylinder array. J. Fluids Struct. 1989, 3, 165–185. [Google Scholar] [CrossRef]
- Bhadbhade, V.; Jalili, N.; Mahmoodi, S.N. A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J. Sound Vib. 2008, 311, 1305–1324. [Google Scholar] [CrossRef]
- Trethewey, M.; Sommer, H.; Cafeo, J. A dual beam laser vibrometer for measurement of dynamic structural rotations and displacements. J. Sound Vib. 1993, 164, 67–84. [Google Scholar] [CrossRef]
- Jin, W.; Zhou, Y.; Chan, P.; Xu, H. A fibre-optic grating sensor for the study of flow-induced vibrations. Sens. Actuators A Phys. 2000, 79, 36–45. [Google Scholar] [CrossRef]
- Chuang, K.C.; Yuan, Z.W.; Guo, Y.; Lv, X.F. A self-demodulated fiber Bragg grating for investigating impact-induced transient responses of phononic crystal beams. J. Sound Vib. 2018, 431, 40–53. [Google Scholar] [CrossRef]
- Jang, B.W.; Kim, C.G. Real-time estimation of delamination occurrence induced by low-velocity impact in composite plates using optical fiber sensing system. Compos. Struct. 2018, 189, 455–462. [Google Scholar] [CrossRef]
- Li, Y.; Yang, K.; Li, X. Temperature sensing characteristics of metal coated FBG during dynamic cooling process. Opt. Fiber Technol. 2018, 45, 368–375. [Google Scholar] [CrossRef]
- Davis, M.; Kersey, A. All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler. Electron. Lett. 1994, 30, 75–77. [Google Scholar] [CrossRef]
- Hung, S.S.; Chang, H.C.; Chang, I.N. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection. Sensors 2016, 16, 2087. [Google Scholar] [CrossRef]
- Jorge, P.A.S.; Silva, S.O.; Gouveia, C.; Tafulo, P.; Coelho, L.; Caldas, P.; Viegas, D.; Rego, G.; Baptista, J.M.; Santos, J.L.; et al. Fiber Optic-Based Refractive Index Sensing at INESC Porto. Sensors 2012, 12, 8371–8389. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.N.; Chiang, K.S. Thermal effects on the transmission spectra of long-period fiber gratings. Opt. Commun. 2002, 208, 321–327. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Bock, W.J.; Kumar, A.; Mikulic, P. Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings. Opt. Lett. 2013, 38, 1666–1668. [Google Scholar] [CrossRef]
- Liao, C.R.; Wang, Y.; Wang, D.N.; Yang, M.W. Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement. IEEE Photonics Technol. Lett. 2010, 22, 1686–1688. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Miao, Y.; Ma, Z.; Li, B. Simultaneous measurement of temperature and refractive index based on microfiber Bragg Grating in Sagnac loop. Opt. Fiber Technol. 2019, 47, 147–151. [Google Scholar] [CrossRef]
- Park, J.; Kwon, Y.S.; Ko, M.O.; Jeon, M.Y. Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement. Opt. Fiber Technol. 2017, 38, 147–153. [Google Scholar] [CrossRef]
- Zou, H.; Liang, D.; Zeng, J. Dynamic strain measurement using two wavelength-matched fiber Bragg grating sensors interrogated by a cascaded long-period fiber grating. Opt. Lasers Eng. 2012, 50, 199–203. [Google Scholar] [CrossRef]
- Zou, Y.; Dong, X. Demodulation of the FBG temperature sensor with the tunable twin-core fiber. Microw. Opt. Technol. Lett. 2011, 53, 81–84. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Liu, B.; Zhang, J.; Yuan, S.; Kai, G.; Dong, X. The interrogation system for FBG sensing based on the InGaAs linear image sensor. Microw. Opt. Technol. Lett. 2008, 50, 1101–1104. [Google Scholar] [CrossRef]
- Bedon, C.; Bergamo, E.; Izzi, M.; Noè, S. Prototyping and Validation of MEMS Accelerometers for Structural Health Monitoring—The Case Study of the Pietratagliata Cable-Stayed Bridge. J. Sens. Actuator Netw. 2018, 7, 30. [Google Scholar] [CrossRef]
- Cigada, A.; Lurati, M.; Redaelli, M.; Vanali, M. Mechanical Performance and Metrological Characterization of MEMS Accelerometers and Application in Modal Analysis. In Proceedings of the IMAC XXV International Modal Analysis Conference, Orlando, FL, USA, 19–22 February 2007; pp. 236–244. [Google Scholar]
- Sun, Z.; Chen, D.; Chen, J.; Deng, T.; Li, G.; Xu, C.; Wang, J. A MEMS Based Electrochemical Seismometer with Low Cost and Wide Working Bandwidth. Procedia Eng. 2016, 168, 806–809. [Google Scholar] [CrossRef]
- Benevicius, V.; Ostaševičius, V.; Gaidys, R. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements. Sensors 2013, 13, 11184–11195. [Google Scholar] [CrossRef]
- Jiménez, S.; Cole, M.O.; Keogh, P.S. Vibration sensing in smart machine rotors using internal MEMS accelerometers. J. Sound Vib. 2016, 377, 58–75. [Google Scholar] [CrossRef] [Green Version]
- Sirkis, J.S. Unified approach to phase-strain-temperature models for smart structure interferometric optical fiber sensors: Part 1, development. Opt. Eng. 1993, 32, 752. [Google Scholar] [CrossRef]
- Falate, R.; Frazão, O.; Rego, G.; Fabris, J.L.; Santos, J.L. Refractometric sensor based on a phase-shifted long-period fiber grating. Appl. Opt. 2006, 45, 5066–5072. [Google Scholar] [CrossRef]
- Ng, M.N.; Chen, Z.; Chiang, K.S. Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect. IEEE Photonics Technol. Lett. 2002, 14, 361–362. [Google Scholar]
- Her, S.C.; Yang, C.M. Dynamic strain measured by Mach-Zehnder interferometric optical fiber sensors. Sensors 2012, 12, 3314–3326. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Her, S.-C.; Chung, S.-C. Dynamic Responses Measured by Optical Fiber Sensor for Structural Health Monitoring. Appl. Sci. 2019, 9, 2956. https://doi.org/10.3390/app9152956
Her S-C, Chung S-C. Dynamic Responses Measured by Optical Fiber Sensor for Structural Health Monitoring. Applied Sciences. 2019; 9(15):2956. https://doi.org/10.3390/app9152956
Chicago/Turabian StyleHer, Shiuh-Chuan, and Shin-Chieh Chung. 2019. "Dynamic Responses Measured by Optical Fiber Sensor for Structural Health Monitoring" Applied Sciences 9, no. 15: 2956. https://doi.org/10.3390/app9152956
APA StyleHer, S.-C., & Chung, S.-C. (2019). Dynamic Responses Measured by Optical Fiber Sensor for Structural Health Monitoring. Applied Sciences, 9(15), 2956. https://doi.org/10.3390/app9152956