Waterproof Aerated Bricks from Stone Powder Waste through Nano-TiO2 Structured Hydrophobic Surface Modification
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Aerated Bricks with Surface Modification
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ji, Y.X.; Rong, X.; Zhong, H.; Wang, Y.H.; Wang, S.F.; Lu, L. Making Marble Powder Waste Profitable by Using Nano-TiO2 Surface Modification for Air Quality Improvement Applications. J. Nanomater. 2017, 2017, 6501793. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Auda, E.M. Re-use of waste marble dust in the production of cement and concrete. Constr. Build. Mater. 2014, 50, 28–41. [Google Scholar] [CrossRef]
- Ergün, A. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Constr. Build. Mater. 2011, 25, 806–812. [Google Scholar] [CrossRef]
- Bilgin, N.; Yeprem, H.A.; Arslan, S.; Bilgin, A.; Günay, E.; Maroglu, M. Use of waste marble powder in brick industry. Constr. Build. Mater. 2012, 29, 449–457. [Google Scholar] [CrossRef]
- Hebhoub, H.; Aoun, H.; Belachia, M.; Houari, H.; Ghorbel, E. Use of waste marble aggregates in concrete. Constr. Build. Mater. 2011, 25, 1167–1171. [Google Scholar] [CrossRef]
- Wong, Y.; Tong, L.; Hu, Y.; Wu, P. A self-assembly and high robustness super-hydrophobic coating based on waste marble powder. Mater. Trans. 2016, 57, 2127–2131. [Google Scholar] [CrossRef]
- Mostafa, N.Y. Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cem. Concr. Res. 2005, 35, 1349–1357. [Google Scholar] [CrossRef]
- Huang, X.Y.; Ni, W.; Cui, W.H.; Wang, Z.J.; Zhu, L.P. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Constr. Build. Mater. 2012, 27, 1–5. [Google Scholar] [CrossRef]
- Aulakh, D.S.; Singh, J.; Kumar, S. The Effect of Utilizing Rice Husk Ash on Some Properties of Concrete—A Review. Curr. World Environ. 2018, 13, 224–231. [Google Scholar] [CrossRef]
- Zheng, D.D.; Ji, T.; Wang, C.Q.; Sun, C.J.; Lin, X.J.; Hossain, K.M.A. Effect of the combination of fly ash and silica fume on water resistance of Magnesium–Potassium Phosphate Cement. Constr. Build. Mater. 2016, 106, 415–421. [Google Scholar] [CrossRef]
- Johnson R.E., Jr.; Dettre, R.H. Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface. J. Phys. Chem. 1964, 68, 1744–1750. [Google Scholar] [CrossRef]
- Barthlott, W.; Ehler, N. Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten; Akademie der Wissenschaften und der Literatur: Mainz, Germany, 1977. [Google Scholar]
- Lu, Y.; Sathasivam, S.; Song, J.L.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Manabe, K.; Nishizawa, S.; Kyung, K.H.; Shiratori, S. Optical Phenomena and Antifrosting Property on Biomimetics Slippery Fluid-Infused Antireflective Films via Layer-by-Layer Comparison with Superhydrophobic and Antireflective Films. Appl. Mater. Interfaces 2014, 6, 13985–13993. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Lett. 2017, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Hu, Y.; Wang, Y.H.; Yang, H.X. TiO2/silane coupling agent composed of two layers structure: A super-hydrophilic self-cleaning coating applied in PV panels. Appl. Energy 2017, 204, 932–938. [Google Scholar] [CrossRef]
- Lakhani, R.; Kumar, R.; Tomar, P. Utilization of Stone Waste in the Development of Value Added Products: A State of the Art Review. J. Eng. Sci. Technol. Rev. 2014, 7, 180–187. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Suzuki, S.; Ueno, K. Apparent Contact Angle Calculated from a Water Repellent Model with Pinning Effect. Langmuir 2017, 33, 138–143. [Google Scholar] [CrossRef]
- Simpson, J.T.; Hunter, S.R.; Aytug, T. Superhydrophobic Materials and Coatings: A Review. Rep. Prog. Phys. 2015, 78, 086501. [Google Scholar] [CrossRef]
- Cao, M.; Guo, D.; Yu, C.; Li, K.; Liu, M.; Jiang, L. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused “Slippery” Surfaces: A Brief Study on the Functions and Applications. ACS Appl. Mater. Interfaces 2016, 86, 3615–3623. [Google Scholar] [CrossRef]
- Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C. Growth of highly textured SnS on mica using an SnSe buffer layer. Thin Solid Films 2014, 564, 206–212. [Google Scholar] [CrossRef]
- Wang, S.F.; Wang, W.; Fong, W.K.; Yu, Y.; Surya, C. Tin Compensation for the SnS Based Optoelectronic Devices. Sci. Rep. 2017, 7, 39704. [Google Scholar] [CrossRef] [PubMed]
- Hozumi, A.; Takai, O. Effect of hydrolysis groups in fluoro-alkyl silanes on water repellency of transparent two-layer hard-coatings. Appl. Surf. Sci. 1996, 103, 431–441. [Google Scholar] [CrossRef]
- Latthe, S.S.; Imai, H.; Ganesan, V.; Rao, A.V. Superhydrophobic silica films by sol-gel co-precursor method. Appl. Surf. Sci. 2009, 256, 217–222. [Google Scholar] [CrossRef]
- Teshima, K.; Sugimura, H.; Inoue, Y.; Takai, O. Gas barrier performance of surface-modified silica films with grafted organosilane molecules. Langmuir 2003, 19, 8331–8334. [Google Scholar] [CrossRef]
- Brassard, J.-D.; Sarkar, D.K.; Perron, J. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films. ACS Appl. Mater. Interfaces 2011, 3, 3583–3588. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zeng, S.; Ji, Y.; Shen, B.; Wang, Z.; Zhong, H.; Wang, S. Waterproof Aerated Bricks from Stone Powder Waste through Nano-TiO2 Structured Hydrophobic Surface Modification. Appl. Sci. 2019, 9, 2619. https://doi.org/10.3390/app9132619
Li T, Zeng S, Ji Y, Shen B, Wang Z, Zhong H, Wang S. Waterproof Aerated Bricks from Stone Powder Waste through Nano-TiO2 Structured Hydrophobic Surface Modification. Applied Sciences. 2019; 9(13):2619. https://doi.org/10.3390/app9132619
Chicago/Turabian StyleLi, Tao, Shaopeng Zeng, Yaxiong Ji, Boxu Shen, Zhuangmiao Wang, Hong Zhong, and Shifeng Wang. 2019. "Waterproof Aerated Bricks from Stone Powder Waste through Nano-TiO2 Structured Hydrophobic Surface Modification" Applied Sciences 9, no. 13: 2619. https://doi.org/10.3390/app9132619
APA StyleLi, T., Zeng, S., Ji, Y., Shen, B., Wang, Z., Zhong, H., & Wang, S. (2019). Waterproof Aerated Bricks from Stone Powder Waste through Nano-TiO2 Structured Hydrophobic Surface Modification. Applied Sciences, 9(13), 2619. https://doi.org/10.3390/app9132619