Metasurface Antennas Embedded in Small Circular Cavities for Telemetry Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Circular Cavity Metasurface Antenna with a Diameter of 0.25 λ0
2.1. Description of the Proposed Antenna
2.2. Description of the Reference Antenna: A Circular Patch Embedded in a Circular Cavity
2.3. Simple Models for Describing Small-Cavity Antenna Bandwidth Behavior
2.3.1. Transmission Line Model of a Cavity Patch Antenna
2.3.2. Transmission Line Model of a Cavity Metasurface
2.4. Bandwidth Performance of Small Circular Cavity Antennas
2.5. Experimental Results
3. Metasurface Antennas in Small Cavities for Telemetry Applications
3.1. Cavity Diameter of 0.15 λ0
3.1.1. Patch with Cavity Diameter a = 20 mm (0.15 λ0)
3.1.2. Metasurface with Cavity Diameter a = 20 mm (0.15 λ0)
3.2. Cavity Diameter of 0.12 λ0
3.2.1. Validation Design with hc = 14 mm
3.2.2. Design for Projectiles with hc = 12.6 mm
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pozar, D.M. Microstrip antennas. Proc. IEEE 1992, 80, 79–91. [Google Scholar] [CrossRef]
- Bahl, I.J.; Bhartia, P. Microstrip Antennas; Artech House: Norwood, MA, USA, 1980. [Google Scholar]
- Karmakar, N.C. On miniaturisation and bandwidth enhancement of a cavity backed circular microstrip patch antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, 16–21 June 2002; Volume 3, pp. 596–599. [Google Scholar]
- Karmakar, N.C. Investigations into a cavity-backed circular-patch antenna. IEEE Trans. Antennas Propag. 2002, 50, 1706–1715. [Google Scholar] [CrossRef]
- Aberle, J.T. On the use of metallized cavities backing microstrip antennas. In Proceedings of the Antennas and Propagation Society Symposium, London, ON, Canada, 24–28 June 1991; Volume 1, pp. 60–63. [Google Scholar]
- Zavosh, F.; Aberle, J.T. Improving the performance of microstrip patch antennas. IEEE Antennas Propag. Mag. 1996, 38, 7–12. [Google Scholar] [CrossRef]
- Martinis, M.; Mahdjoubi, K.; Sauleau, R.; Collardey, S.; Bernard, L.; Valerio, G. On maximum bandwidth of rectangular cavity antennas with broadside radiation pattern. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1709–1712. [Google Scholar] [CrossRef]
- Martinis, M.; Mahdjoubi, K.; Sauleau, R.; Collardey, S.; Bernard, L. Bandwidth behavior and improvement of miniature cavity antennas with broadside radiation pattern using a metasurface. IEEE Trans. Antennas Propag. 2015, 63, 1899–1908. [Google Scholar] [CrossRef]
- Martinis, M. Development and Characterization of Metamaterials in Cavities. Applications to the Design of Compact Antennas. Ph.D. Thesis, University of Rennes 1, Rennes, France, November 2014. [Google Scholar]
- Faenzi, M.; Minatti, G.; Maci, S. Metasurface antennas: Design and performance. IEICE Trans. Commun. 2019, E102-B, 174–181. [Google Scholar] [CrossRef]
- Martinis, M.; Bernard, L.; Mahdjoubi, K.; Sauleau, R.; Collardey, S. Wideband antenna in cavity based on metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1053–1056. [Google Scholar] [CrossRef]
- Martinis, M.; Mahdjoubi, K.; Sauleau, R.; Collardey, S.; Bernard, L. Circuit models explaining bandwidth behavior of small circular cavity backed patch antennas. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 3652–3656. [Google Scholar]
- Gustafsson, M.; Sohl, C.; Kristensson, G. Physical limitations on antennas of arbitrary shape. Proc. R. Soc. A 2007, 463, 2589–2607. [Google Scholar] [CrossRef] [Green Version]
- CST Studio Suite. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed on 18 June 2019).
- Cos, M.E.; Las-Heras, F. Polypropylene-based dual band CPW-fed monopole antenna. IEEE Antennas Propag. Mag. 2013, 55, 264–273. [Google Scholar] [CrossRef]
- Best, S.R. Low Q electrically small linear and elliptical polarized spherical dipole antennas. IEEE Trans. Antennas Propag. 2005, 53, 1047–1053. [Google Scholar] [CrossRef]
- Sarrazin, F.; Pflaum, S.; Delaveaud, C. Radiation efficiency improvement of a balanced miniature IFA-inspired circular antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1309–1312. [Google Scholar] [CrossRef]
- Albisser, M.; Dobre, S.; Decrocq, C.; Saada, F.; Martinez, B.; Gnemmi, P. Aerodynamic Characterization of a new concept of long range projectiles from free-flight data. In Proceedings of the 30th International Symposium on Ballistics (ISB), Long Beach, CA, USA, 11–15 September 2017. [Google Scholar]
- Saada, F.; Zeiner, A.; Meder, K.; Garcia-Gamez, L.; Bernard, L. Miniaturized onboard electronics for attitude measurement of medium caliber projectiles. In Proceedings of the IEEE International Conference on Electronics Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018. [Google Scholar]
- Albisser, M.; Saada, F.; Bernard, L.; Adam, R.; Zeiner, A. Design optimization of an instrumented spin-stabilized projectile developed for the aerodynamic characterization from free flight data. In Proceedings of the International Symposium of Ballistic 2019, Hyderabad, India, 4–8 November 2019. [Google Scholar]
- Gámez, L.G.; Martinis, M.; Bernard, L.; Sauleau, R.; Collardey, S.; Mahdjoubi, K.; Pouliguen, P.; Potier, P. Antenne miniature en cavité circulaire à base de métasurfaces. In Proceedings of the Journées Nationales Micro-ondes (JNM), St Malo, France, 16–19 May 2017. [Google Scholar]
Substrate | RO3010 +air | Sim. BW (MHz) | 82 |
a (mm) | 32.0 | Meas. BW (MHz) | 90 |
Dielectric layers (mm) | 3 × 0.63 | Sim. gain (dB) | 4.5 |
hc (mm) | 15 | Meas. gain (dB) | 3.9 |
fx (mm) | 6.6 | Meas. efficiency (%) | 79.4 |
g (mm) | 2.3 | Meas. XPD (dB) | 21.9 |
Ll (mm) | 5.14 | Meas. HPBW E-plane (°) | 95 |
Wl (mm) | 4.8 | Meas. HPBW H-plane (°) | 81 |
Substrate | RO3010 +PP | Sim. BW (MHz) | 20 |
a (mm) | 20.0 | Meas. BW (MHz) | 21 |
Dielectric layers (mm) | 5 × 0.63 | Sim. gain (dB) | 0.8 |
hc (mm) | 14 | Meas. gain (dB) | −1.0 |
fx (mm) | 4.1 | Meas. efficiency (%) | 37.7 |
g (mm) | 1.68 | Meas. XPD (dB) | 28.0 |
Ll (mm) | 1.45 | Meas. HPBW E-plane (°) | 158 |
Wl (mm) | 4.8 | Meas. HPBW H-plane (°) | 102 |
Substrate | RO3010 +PP | Sim. BW (MHz) | 20 |
a (mm) | 16.0 | Meas. BW (MHz) | 20 |
Dielectric layers (mm) | 6 × 0.63 | Sim. gain (dB) | −3.0 |
hc (mm) | 14 | Meas. gain (dB) | −5.5 |
fx (mm) | 0.6 | Meas. efficiency (%) | 13.5 |
g (mm) | 1.37 | Meas. XPD (dB) | 32.5 |
Ll (mm) | 1.43 | Meas. HPBW E-plane (°) | / |
Wl (mm) | 4.0 | Meas. HPBW H-plane (°) | 93 |
Substrate | RO4350+ RO3010 +PP | Sim. BW (MHz) | 15 |
a (mm) | 16.0 | Meas. BW (MHz) | 20 |
Dielectric layers (mm) | 1 × 0.5 + 7 × 0.63 | Sim. gain (dB) | −3.0 |
hc (mm) | 12.6 | Meas. gain (dB) | −5.5 |
fx (mm) | 1.4 | Meas. efficiency (%) | 14.5 |
g (mm) | 0.3 | Meas. XPD (dB) | 33.5 |
Ll (mm) | 4.2 | Meas. HPBW E-plane (°) | 126 |
Wl (mm) | 4.0 | Meas. HPBW H-plane (°) | 97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernard, L.; Martinis, M.; Collardey, S.; Mahdjoubi, K.; Sauleau, R. Metasurface Antennas Embedded in Small Circular Cavities for Telemetry Applications. Appl. Sci. 2019, 9, 2496. https://doi.org/10.3390/app9122496
Bernard L, Martinis M, Collardey S, Mahdjoubi K, Sauleau R. Metasurface Antennas Embedded in Small Circular Cavities for Telemetry Applications. Applied Sciences. 2019; 9(12):2496. https://doi.org/10.3390/app9122496
Chicago/Turabian StyleBernard, Loïc, Mario Martinis, Sylvain Collardey, Kouroch Mahdjoubi, and Ronan Sauleau. 2019. "Metasurface Antennas Embedded in Small Circular Cavities for Telemetry Applications" Applied Sciences 9, no. 12: 2496. https://doi.org/10.3390/app9122496
APA StyleBernard, L., Martinis, M., Collardey, S., Mahdjoubi, K., & Sauleau, R. (2019). Metasurface Antennas Embedded in Small Circular Cavities for Telemetry Applications. Applied Sciences, 9(12), 2496. https://doi.org/10.3390/app9122496