Improved Student’s t-Based Unscented Filter and its Application to Trajectory Estimation for Maneuvering Target
Abstract
1. Introduction
2. Preliminaries and Problem Statement
2.1. Problem Statement
2.2. Problem Statement
3. Main Results
4. Improved Student’s t-Based Unscented Filter
4.1. The Calculation of the Student’s t Integral
4.2. Improved Student’s t-Based Unscented Filter
5. Simulation
5.1. Case 1
5.2. Case 2
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karlgaard, C.D.; Schaub, H. Huber-Based Divided Difference Filtering. J. Guid. Control Dyn. 2012, 30, 885–891. [Google Scholar] [CrossRef]
- Chang, L.; Hu, B.; Chang, G.; Li, A. Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 2012, 6, 502–509. [Google Scholar] [CrossRef]
- Chien-Hao, T.; Lin, S.F.; Dah-Jing, J. Robust Huber-Based Cubature Kalman Filter for GPS Navigation Processing. J. Navig. 2016, 70, 527–546. [Google Scholar]
- Deng, Z.; Yin, L.; Huo, B.; Xia, Y. Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion. Sensors 2018, 18, 2406. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, W.; Sun, S.; Li, L. Robust Information Filter Based on Maximum Correntropy Criterion. J. Guid. Control Dyn. 2016, 39, 1–6. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.; Zhao, H.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Wu, Z.; Chambers, J.A. A novel Robust student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1545–1554. [Google Scholar] [CrossRef]
- Gustafsson, F.; Gunnarsson, F.; Bergman, N.; Forssell, U.; Jansson, J.; Karlsson, R.; Nordlund, P.-J. Particle Filters for Positioning, Navigation and Tracking. IEEE Trans. Signal Process. 2002, 50, 425–437. [Google Scholar] [CrossRef]
- Míguez, J. Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target tracking and dynamic optimization. Digit. Signal Process. 2007, 17, 787–807. [Google Scholar] [CrossRef]
- Zaitouny, A.; Stemler, T.; Algar, S.D. Optimal Shadowing Filter for a Positioning and Tracking Methodology with Limited Information. Sensors 2019, 19, 931. [Google Scholar] [CrossRef] [PubMed]
- Zaitouny, A.A.; Stemler, T.; Judd, K. Tracking Rigid Bodies Using Only Position Data: A Shadowing Filter Approach based on Newtonian Dynamics. Digit. Signal Process. 2017, 67, 81–90. [Google Scholar] [CrossRef]
- Judd, K. Tracking An Object with Unknown Accelerations Using A Shadowing Filter. arXiv 2015, arXiv:1502.07743. [Google Scholar]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. Robust Student’st based nonlinear filter and smoother. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2586–2596. [Google Scholar] [CrossRef]
- Roth, M.; Özkan, E.; Gustafsson, F. A Student’s t filter for heavy tailed process and measurement noise. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 5770–5774. [Google Scholar]
- Huang, Y.; Zhang, Y. Robust student’s t-based stochastic cubature filter for nonlinear systems with heavy-tailed process and measurement noises. IEEE Access 2017, 5, 7964–7974. [Google Scholar] [CrossRef]
- Bryson, A.; Johansen, D. Linear filtering for time-varying systems using measurements containing colored noise. IEEE Trans. Autom. Control 1965, 10, 4–10. [Google Scholar] [CrossRef]
- Liu, W. State estimation of discrete-time systems with arbitrarily correlated noises. Int. J. Adapt. Control Signal Process. 2014, 28, 949–970. [Google Scholar] [CrossRef]
- Bryson, A., Jr.; Henrikson, L. Estimation using sampled data containing sequentially correlated noise. J. Spacecr. Rocket. 1968, 5, 662–665. [Google Scholar] [CrossRef]
- Petovello, M.G.; O’Keefe, K.; Lachapelle, G.; Cannon, M.E. Consideration of time-correlated errors in a Kalman filter applicable to GNSS. J. Geod. 2009, 83, 51–56. [Google Scholar] [CrossRef]
- Hermoso-Carazo, A.; Linares-Pérez, J. Unscented filtering algorithm using two-step randomly delayed observations in nonlinear systems. Appl. Math. Model. 2009, 33, 3705–3717. [Google Scholar] [CrossRef]
- Wang, X.; Liang, Y.; Pan, Q.; Zhao, C. Gaussian filter for nonlinear systems with one-step randomly delayed measurements. Automatica 2013, 49, 976–986. [Google Scholar] [CrossRef]
- Gu, Y.; Li, J.; Feng, D. State filtering and parameter estimation for linear systems with d-step state-delay. IET Signal Process. 2014, 8, 639–646. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Chu, D. Optimal Estimation for Systems with Multiplicative Noises, Random Delays and Multiple Packet Dropouts. IET Signal Process. 2016, 10, 880–887. [Google Scholar] [CrossRef]
- Geng, H.; Wang, Z.; Cheng, Y.; Alsaadi, F.E.; Dobaie, A.M. State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach. Signal Process. 2019, 154, 120–128. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, Y.; Liu, J.; Yu, K.; You, Y.; Jing, P.; He, Y. Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking. Sensors 2018, 18, 2012. [Google Scholar] [CrossRef]
Problems | ISTUF | RSTUF |
---|---|---|
Dealing with STD noises | Use the Student’s t filtering framework | Use the Student’s t filtering framework |
Dealing with time-correlated noises | Based on measurement differencing method, rewrite the noise function to time-irrelevant form. | no action |
Dealing with the randomly delayed measurement | Expand the state vector with measurement noise, and consider the conditional PDF of the measurement noise. | no action |
Calculating the Student’s t weighted integrals | Use the UT method | Use the UT method |
Filters | ARMSE of Position | ARMSE of Velocity | ARMSE of Turn Rate | Time Consuming |
---|---|---|---|---|
IUKF | 14.779 m | 2.866 m/s | 0.607°/s | 0.0481 s |
RSTUF | 2.342 m | 0.578 m/s | 0.051°/s | 0.0494 s |
ISTUF | 1.841 m | 0.386 m/s | 0.027°/s | 0.0519 s |
Filters | ARMSE of Position (m) | ARMSE of Velocity (m/s) | ARMSE of Acceleration (m/s2) |
---|---|---|---|
IUKF | 662.2783 | 327.1131 | 0. 9213 |
RSTUF | 40.7887 | 37.7753 | 0.0748 |
ISTUF | 12.1137 | 8.8290 | 0.0247 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Ma, K. Improved Student’s t-Based Unscented Filter and its Application to Trajectory Estimation for Maneuvering Target. Appl. Sci. 2019, 9, 2186. https://doi.org/10.3390/app9112186
Wu X, Ma K. Improved Student’s t-Based Unscented Filter and its Application to Trajectory Estimation for Maneuvering Target. Applied Sciences. 2019; 9(11):2186. https://doi.org/10.3390/app9112186
Chicago/Turabian StyleWu, Xiaohang, and Kemao Ma. 2019. "Improved Student’s t-Based Unscented Filter and its Application to Trajectory Estimation for Maneuvering Target" Applied Sciences 9, no. 11: 2186. https://doi.org/10.3390/app9112186
APA StyleWu, X., & Ma, K. (2019). Improved Student’s t-Based Unscented Filter and its Application to Trajectory Estimation for Maneuvering Target. Applied Sciences, 9(11), 2186. https://doi.org/10.3390/app9112186