A Method of Insulator Faults Detection in Aerial Images for High-Voltage Transmission Lines Inspection
Abstract
:1. Introduction
2. Proposed Method
2.1. Insulator Detection
2.1.1. Model Structure
2.1.2. Training Preparation
- First branch (Large): (322 103), (256 158), (253 289), (363 202).
- Second branch (Middle): (45 225), (214 82), (135 132), (68 319).
- Third branch (Small): (31 26), (66 48), (32 126), (123 58).
2.2. Insulator Faults Detection
2.3. Data Collection
3. Experimental Results and Discussion
3.1. Analysis of the Proposed Network
3.2. Analysis of the Proposed Insulator Multi-Fault Detection Method
4. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, V.N.; Jenssen, R.; Roverso, D. Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 2018, 99, 107–120. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, H.; Zhang, Y. Automatic identification and location technology of glass insulator self-shattering. J. Electron. Imaging 2017, 26, 063014. [Google Scholar] [CrossRef]
- Bhola, R.; Krishna, N.H.; Ramesh, K.N.; Senthilnath, J.; Anand, G. Detection of the power lines in UAV remote sensed images using spectral-spatial methods. J. Environ. Manag. 2018, 206, 1233–1242. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Li, W.; Chen, S. Automatic power line inspection using uav images. Remote Sens. 2017, 9, 824. [Google Scholar] [CrossRef]
- Bian, J.; Hui, X.; Zhao, X.; Tan, M. A monocular vision–based perception approach for unmanned aerial vehicle close proximity transmission tower inspection. Int. J. Adv. Robot. Syst. 2019, 16, 1729881418820227. [Google Scholar] [CrossRef]
- Cerón, A.; Mondragón, I.; Prieto, F. Real-time transmission tower detection from video based on a feature descriptor. IET Comput. Vis. 2016, 11, 33–42. [Google Scholar] [CrossRef]
- Park, K.C.; Motai, Y.; Yoon, J.R. Acoustic Fault Detection Technique for High-Power Insulators. IEEE Trans. Ind. Electron. 2017, 64, 9699–9708. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, X.; Xu, G.; Zhang, L.; Qi, Y. Aggregating deep convolutional feature maps for insulator detection in infrared images. IEEE Access 2017, 5, 21831–21839. [Google Scholar] [CrossRef]
- He, H.; Luo, D.; Lee, W.J.; Zhang, Z.; Cao, Y.; Lu, T. A Contactless Insulator Contamination Levels Detecting Method Based on Infrared Images features and RBFNN. IEEE Trans. Ind. Appl. 2018, 55, 2455–2463. [Google Scholar] [CrossRef]
- Gong, X.; Yao, Q.; Wang, M.; Lin, Y. A Deep Learning Approach for Oriented Electrical Equipment Detection in Thermal Images. IEEE Access 2018, 6, 41590–41597. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, R.; Yang, Q.; Li, X.; Zhao, Z. Insulator fault detection based on spatial morphological features of aerial images. IEEE Access 2018, 6, 35316–35326. [Google Scholar] [CrossRef]
- Li, X.; Jin, L.; Xu, Z.; Jiang, T.; Jin, H. Surface discharge detection method of contaminated insulators based on ultraviolet images’ parameters. In Proceedings of the 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), Xi’an, China, 14–17 May 2017; pp. 155–158. [Google Scholar]
- Prasad, P.S.; Rao, B.P. Review on Machine Vision based Insulator Inspection Systems for Power Distribution System. J. Eng. Sci. Technol. Rev. 2016, 9, 135–141. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yan, B. Vision based detection and location for cracked insulator. Comput. Eng. Des. 2014, 35, 583–587. [Google Scholar]
- Zhao, Z.; Liu, N.; Wang, L. Localization of multiple insulators by orientation angle detection and binary shape prior knowledge. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3421–3428. [Google Scholar] [CrossRef]
- Wang, X.; Guo, K.; Wang, Y. Detection algorithm of cracked insulator based on statistical shape models. Comput. Meas. Control 2018, 26, 26–28. [Google Scholar]
- Hao-ran, J.; Lin-jun JI, N.; Shu-jia, Y.A.N. Recognition and fault diagnosis of insulator string in aerial images. J. Mech. Electr. Eng. 2015, 32, 274–278. [Google Scholar]
- Yin, J.; Lu, Y.; Gong, Z.; Jiang, Y.; Yao, J. Edge Detection of High-Voltage Porcelain Insulators in Infrared Image Using Dual Parity Morphological Gradients. IEEE Access 2019, 7, 32728–32734. [Google Scholar] [CrossRef]
- Miao, W.; Yi, D.U.; Zhong-rui, Z. Study on power transmission lines inspection using unmanned aerial vehicle and image recognition of insulator defect. J. Electron. Meas. Instrum. 2015, 29, 1862–1869. [Google Scholar]
- Zhai, Y.; Wang, D.; Zhang, M.; Wang, J.; Guo, F. Fault detection of insulator based on saliency and adaptive morphology. Multimed. Tools Appl. 2017, 76, 12051–12064. [Google Scholar] [CrossRef]
- Liao, S. Research on Key Techniques of Components Detection Algorithm in Power Line Images. Ph.D. Thesis, Dalian Maritime University, Dalian, China, 2017. [Google Scholar]
- Tomaszewski, M.; Osuchowski, J.; Debita, Ł. Effect of Spatial Filtering on Object Detection with the SUF Algorithm. In Proceedings of the International Scientific Conference BCI 2018 Opole, Opole, Poland, 13–14 March 2018; Springer: Cham, Swizerlands, 2018; pp. 121–140. [Google Scholar]
- Yao, X.; Pan, Y.; Liu, L.; Cheng, X. Identification and location of catenary insulator in complex background based on machine vision. In Proceedings of the AIP Conference Proceedings, Coimbatore, India, 28–29 March 2018; AIP Publishing: Melville, NY, USA, 2018; Volume 1955. [Google Scholar]
- Zhao, Z.; Liu, N. The recognition and localization of insulators adopting SURF and IFS based on correlation coefficient. Optik 2014, 125, 6049–6052. [Google Scholar] [CrossRef]
- Liao, S.; An, J. A robust insulator detection algorithm based on local features and spatial orders for aerial images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 963–967. [Google Scholar] [CrossRef]
- Iruansi, U. Power-Line Insulator Defect Detection and Classification; University of KwaZulu-Natal: Durban, South Africa, 2017. [Google Scholar]
- Jiang, Y.T.; Han, J.; Ding, J. The identification and diagnosis of self-blast defects of glass insulators based on multi-feature fusion. Electr. Power 2017, 50, 52–58. [Google Scholar]
- Ting, F.; Chong, D.; Xing-liu, H.U.; Yan, W. Contour extraction and fault detection of insulator strings in aerial images. J. Shanghai Jiaotong Univ. 2013, 47, 1818–1822. [Google Scholar]
- Cheng, H.; Zhai, Y.; Chen, R.; Wang, D.; Dong, Z.; Wang, Y. Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features. Energies 2019, 12, 543. [Google Scholar] [CrossRef]
- Wu, Q.; An, J. An active contour model based on texture distribution for extracting inhomogeneous insulators from aerial images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3613–3626. [Google Scholar] [CrossRef]
- Ke, H.; Wang, H.; Li, B. Image Segmentation Method of Insulator in Transmission Line Based on Weighted Variable Fuzzy C-Means. J. Eng. Sci. Technol. Rev. 2017, 10, 15–123. [Google Scholar] [CrossRef]
- Guo, L.; Liao, Y.; Yao, H.; Chen, J.; Wang, M. An Electrical Insulator Defects Detection Method Combined Human Receptive Field Model. J. Control Sci. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, D.; Guo, Y.; Zhang, M.; Liu, Y. Recognition of Aerial Insulator Image Based on Structural Model and the Optimal Entropy Threshold Segmentation. DEStech Trans. Eng. Technol. Res. 2016. [Google Scholar] [CrossRef]
- Shang, J.; Li, C.; Cheng, L. Location and detection for self-explode insulator based on vision. J. Electron. Meas. Instrum. 2017, 31, 844–849. [Google Scholar]
- Cui, K. Research on the Key Technologies in Insulator Defect Detection Based on Image. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2016. [Google Scholar]
- Tiantian, Y.; Guodong, Y.; Junzhi, Y. Feature fusion based insulator detection for aerial inspection. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 10972–10977. [Google Scholar]
- Zuo, D.; Hu, H.; Qian, R.; Liu, Z. An insulator defect detection algorithm based on computer vision. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macau, China, 18–20 July 2017; pp. 361–365. [Google Scholar]
- Oberweger, M.; Wendel, A.; Bischof, H. Visual recognition and fault detection for power line insulators. In Proceedings of the 19th Computer Vision Winter Workshop, Křtiny, Czech Republic, 3–5 February 2014; pp. 1–8. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Dalian, China, 26–28 July 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced deep-learning techniques for salient and category-specific object detection: A survey. IEEE Signal Process. Mag. 2018, 35, 84–100. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Xiang, X.; Lv, N.; Guo, X.; Wang, S.; El Saddik, A. Engineering Vehicles Detection Based on Modified Faster R-CNN for Power Grid Surveillance. Sensors 2018, 18, 2258. [Google Scholar] [CrossRef]
- Ma, L.; Xu, C.; Zuo, G.; Bo, B.; Tao, F. Detection Method of Insulator Based on Faster R-CNN. In Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Honolulu, HI, USA, 31 July–4 August 2017; pp. 1410–1414. [Google Scholar]
- Kang, G.; Gao, S.; Yu, L.; Zhang, D. Deep Architecture for High-Speed Railway Insulator Surface Defect Detection: Denoising Autoencoder With Multitask Learning. IEEE Trans. Instrum. Meas. 2018. [Google Scholar] [CrossRef]
- Ling, Z.; Qiu, R.C.; Jin, Z.; Zhang, Y.; He, X.; Liu, H.; Chu, L. An Accurate and Real-time Self-blast Glass Insulator Location Method Based On Faster R-CNN and U-net with Aerial Images. arXiv 2018, arXiv:1801.05143. [Google Scholar]
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of Power Line Insulator Defects Using Aerial Images Analyzed With Convolutional Neural Networks. IEEE Trans. Syst. Man Cybern. Syst. 2018, 1–13. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Available online: https://github.com/AlexeyAB/darknet (accessed on 10 September 2018).
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM transactions on graphics (TOG). ACM 2004, 23, 309–314. [Google Scholar]
- Available online: https://github.com/tzutalin/labelImg (accessed on 15 October 2018).
- Available online: https://www.photoshopessentials.com (accessed on 12 September 2018).
Models | Top-5 | Times (GPU) | Weights |
---|---|---|---|
AlexNet | 80.3 | 3.1 ms | 238 MB |
VGG16 | 90.0 | 9.4 ms | 528 MB |
ResNet18 | 89.9 | 4.6 ms | 44 MB |
ResNet34 | 91.1 | 7.1 ms | 83 MB |
ResNet50 | 92.9 | 11.4 ms | 87 MB |
ResNet101 | 93.7 | 20.0 ms | 160 MB |
Image Number | Training Set | Testing Set | Image Size | Insulator String Number |
---|---|---|---|---|
4031 | 2675 | 1356 | 416 px × 416 px | 9609 |
Image Number | One-Fault | Multi-Fault | Image Size | Fault Number |
---|---|---|---|---|
120 | 60 | 60 | 800 px × 530 px | 228 |
Networks | Running Times (s) | Memory Usages (MB) |
---|---|---|
YOLOv3 | 0.02 | 235 |
YOLOv3-tiny | 0.01 | 33 |
YOLOv2 | 0.01 | 256 |
ResnetV2 | 0.01 | 87 |
Our network | 0.02 | 201 |
Height/Width | 1:2 | 1:3 | 1:4 | 1:5 | 1:6 | 1:7 | 1:8 |
---|---|---|---|---|---|---|---|
Precision | 65% | 81.3% | 89.6% | 96.3% | 94.2% | 93.8% | 93.8% |
Recall | 57% | 76.5% | 85.9% | 93.3% | 91.9% | 91.7% | 92.1% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Yang, Z.; Zhang, Q.; Chen, C.; Li, H.; Lai, S.; Hu, G.; Xu, C.; Xu, H.; Wang, D.; et al. A Method of Insulator Faults Detection in Aerial Images for High-Voltage Transmission Lines Inspection. Appl. Sci. 2019, 9, 2009. https://doi.org/10.3390/app9102009
Han J, Yang Z, Zhang Q, Chen C, Li H, Lai S, Hu G, Xu C, Xu H, Wang D, et al. A Method of Insulator Faults Detection in Aerial Images for High-Voltage Transmission Lines Inspection. Applied Sciences. 2019; 9(10):2009. https://doi.org/10.3390/app9102009
Chicago/Turabian StyleHan, Jiaming, Zhong Yang, Qiuyan Zhang, Cong Chen, Hongchen Li, Shangxiang Lai, Guoxiong Hu, Changliang Xu, Hao Xu, Di Wang, and et al. 2019. "A Method of Insulator Faults Detection in Aerial Images for High-Voltage Transmission Lines Inspection" Applied Sciences 9, no. 10: 2009. https://doi.org/10.3390/app9102009
APA StyleHan, J., Yang, Z., Zhang, Q., Chen, C., Li, H., Lai, S., Hu, G., Xu, C., Xu, H., Wang, D., & Chen, R. (2019). A Method of Insulator Faults Detection in Aerial Images for High-Voltage Transmission Lines Inspection. Applied Sciences, 9(10), 2009. https://doi.org/10.3390/app9102009