The Intra-Class and Inter-Class Relationships in Style Transfer
Abstract
1. Introduction
2. Background and Related Work
2.1. Convolutional Neural Network
2.2. Style Transfer
2.3. Demystifying Neural Style Transfer
3. Method
3.1. Analysis for Gram-Matrix Method
3.2. Analysis for BN Method
3.3. Cov-Matrix Method
3.4. Cov-MDE-Matrix Method
4. Results
4.1. Implementation Details
4.2. Result Comparisons
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hertzmann, A.; Jacobs, C.E.; Oliver, N.; Curless, B.; Salesin, D.H. Image analogies. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 327–340. [Google Scholar]
- Efros, A.A.; Leung, T.K. Texture synthesis by non-parametric sampling. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1033–1038. [Google Scholar]
- Efros, A.A.; Freeman, W.T. Image quilting for texture synthesis and transfer. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 341–346. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Li, Y.; Wang, N.; Liu, J.; Hou, X. Demystifying neural style transfer. arXiv, 2017; arXiv:1701.01036. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Karpathy, A.; Fei-Fei, L. Deep Visual-Semantic Alignments for Generating Image Descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 664–676. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Gooch, B.; Gooch, A. Non-Photorealistic Rendering; AK Peters/CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Rosin, P.; Collomosse, J. Image and Video-Based Artistic Stylisation; Springer Science & Business Media: Berlin, Germany, 2012; Volume 42. [Google Scholar]
- Strothotte, T.; Schlechtweg, S. Non-Photorealistic Computer Graphics: Modeling, Rendering, and Animation; Morgan Kaufmann: San Francisco, CA, USA, 2002. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. A Neural Algorithm of Artistic Style. arXiv, 2015; arXiv:1508.06576. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution; European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 694–711. [Google Scholar]
- Ulyanov, D.; Lebedev, V.; Vedaldi, A.; Lempitsky, V.S. Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. In Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1349–1357. [Google Scholar]
- Ruder, M.; Dosovitskiy, A.; Brox, T. Artistic Style Transfer for Videos; German Conference on Pattern Recognition; Springer: Cham, Switzerland, 2016; pp. 26–36. [Google Scholar]
- Huang, H.; Wang, H.; Luo, W.; Ma, L.; Jiang, W.; Zhu, X.; Li, Z.; Liu, W. Real-Time Neural Style Transfer for Videos. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7044–7052. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V.S. Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv, 2016; arXiv:1607.08022. [Google Scholar]
- Selim, A.; Elgharib, M.; Doyle, L. Painting style transfer for head portraits using convolutional neural networks. ACM Trans. Gr. 2016, 35, 1–18. [Google Scholar] [CrossRef]
- Champandard, A.J. Semantic style transfer and turning two-bit doodles into fine artworks. arXiv, 2016; arXiv:1603.01768. [Google Scholar]
- Li, C.; Wand, M. Combining markov random fields and convolutional neural networks for image synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2479–2486. [Google Scholar]
- Chen, T.Q.; Schmidt, M. Fast Patch-based Style Transfer of Arbitrary Style. arXiv, 2016; arXiv:1612.04337. [Google Scholar]
- Chen, D.; Yuan, L.; Liao, J.; Yu, N.; Hua, G. StyleBank: An Explicit Representation for Neural Image Style Transfer. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2770–2779. [Google Scholar]
- Liao, J.; Yao, Y.; Yuan, L.; Hua, G.; Kang, S.B. Visual Attribute Transfer Through Deep Image Analogy. ACM Trans. Gr. 2017, 36, 120:1–120:15. [Google Scholar] [CrossRef]
- Gatys, L.A.; Bethge, M.; Hertzmann, A.; Shechtman, E. Preserving Color in Neural Artistic Style Transfer; Technical Report. arXiv, 2016; arXiv:1606.05897. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M.; Hertzmann, A.; Shechtman, E. Controlling Perceptual Factors in Neural Style Transfer. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3730–3738. [Google Scholar]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Zorzi, M. Multivariate Spectral Estimation Based on the Concept of Optimal Prediction. IEEE Trans. Autom. Control 2015, 60, 1647–1652. [Google Scholar] [CrossRef]
- Zorzi, M. An interpretation of the dual problem of the THREE-like approaches. Automatica 2015, 62, 87–92. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv:1409.1556. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Qi, M.; Niu, Y.; Li, B. The Intra-Class and Inter-Class Relationships in Style Transfer. Appl. Sci. 2018, 8, 1681. https://doi.org/10.3390/app8091681
Cui X, Qi M, Niu Y, Li B. The Intra-Class and Inter-Class Relationships in Style Transfer. Applied Sciences. 2018; 8(9):1681. https://doi.org/10.3390/app8091681
Chicago/Turabian StyleCui, Xin, Meng Qi, Yi Niu, and Bingxin Li. 2018. "The Intra-Class and Inter-Class Relationships in Style Transfer" Applied Sciences 8, no. 9: 1681. https://doi.org/10.3390/app8091681
APA StyleCui, X., Qi, M., Niu, Y., & Li, B. (2018). The Intra-Class and Inter-Class Relationships in Style Transfer. Applied Sciences, 8(9), 1681. https://doi.org/10.3390/app8091681