# A Novel Dictionary-Based Image Reconstruction for Photoacoustic Computed Tomography

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Analytical Reconstruction

#### 2.2. The Proposed Method

#### Paradigm of the Proposed Method

## 3. Results

^{®}. At every view angle, the improvement obtained by the proposed method compared to other aforementioned methods was statistically significant (p-value < 0.001).

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

PACT | Photoacoustic Computed Tomography |

BP | Back Projection |

WT | Wavelet Transform |

DCT | Discrete Cosine Transform |

TV | Total Variation |

EPI | Edge Preservation Index |

PSNR | Peak Signal-to-Noise Ratio |

FBP | Filtered Back Projection |

PA | Photoacoustic |

CS | Compressed Sensing |

MRI | Magnetic Resonance Imaging |

TAI | Theracoustic Imaging |

DAQ | Data Acquisition |

MCA | Morphological Component Analysis |

GLCM | Gray-Level Co-occurrence Matrix |

OPO | Optical Parametric Oscillator |

NI | National Instrument |

MSE | Minimum Square Error |

## References

- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum.
**2006**, 77, 041101. [Google Scholar] [CrossRef][Green Version] - Nasiriavanaki, M.; Xia, J.; Wan, H.; Bauer, A.Q.; Culver, J.P.; Wang, L.V. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. USA
**2014**, 111, 21–26. [Google Scholar] [CrossRef] [PubMed] - Jeon, M.; Song, W.; Huynh, E.; Kim, J.; Kim, J.; Helfield, B.L.; Leung, B.Y.; Geortz, D.E.; Zheng, G.; Oh, J.; et al. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J. Biomed. Opt.
**2014**, 19, 016005. [Google Scholar] [CrossRef] [PubMed] - Mohammadi-Nejad, A.R.; Mahmoudzadeh, M.; Hassanpour, M.S.; Wallois, F.; Muzik, O.; Papadelis, C.; Hansen, A.; Soltanian-Zadeh, H.; Gelovani, J.; Nasiriavanaki, M. Neonatal brain resting-state functional connectivity imaging modalities. Photoacoustics
**2018**, 10, 1–19. [Google Scholar] [CrossRef] [PubMed] - Mahmoodkalayeh, S.; Lu, X.; Ansari, M.A.; Li, H.; Nasiriavanaki, M. Optimization of light illumination for photoacoustic computed tomography of human infant brain. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2018, International Society for Optics and Photonics, San Francisco, CA, USA, 27 January–1 February 2018; Volume 10494, p. 104946U. [Google Scholar]
- Mozaffarzadeh, M.; Mahloojifar, A.; Orooji, M.; Kratkiewicz, K.; Adabi, S.; Nasiriavanaki, M. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm. J. Biomed. Opt.
**2018**, 23, 026002. [Google Scholar] [CrossRef] [PubMed] - Hariri, A.; Fatima, A.; Mohammadian, N.; Mahmoodkalayeh, S.; Ansari, M.A.; Bely, N.; Avanaki, M.R. Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. J. Biomed. Opt.
**2017**, 22, 075001. [Google Scholar] [CrossRef] [PubMed] - Mozaffarzadeh, M.; Mahloojifar, A.; Orooji, M.; Adabi, S.; Nasiriavanaki, M. Double-Stage Delay Multiply and Sum Beamforming Algorithm: Application to Linear-Array Photoacoustic Imaging. IEEE Trans. Biomed. Eng.
**2018**, 65, 31–42. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mozaffarzadeh, M.; Mahloojifar, A.; Periyasamy, V.; Pramanik, M.; Orooji, M. Eigenspace-Based Minimum Variance Combined with Delay Multiply and Sum Beamformer: Application to Linear-Array Photoacoustic Imaging. IEEE J. Sel. Top. Quantum Electron.
**2019**, 25, 1–8. [Google Scholar] [CrossRef] - Yeh, C.; Li, L.; Zhu, L.; Xia, J.; Li, C.; Chen, W.; Garcia-Uribe, A.; Maslov, K.I.; Wang, L.V. Dry coupling for whole-body small-animal photoacoustic computed tomography. J. Biomed. Opt.
**2017**, 22, 041017. [Google Scholar] [CrossRef] [PubMed][Green Version] - Cho, Y.; Chang, C.C.; Yu, J.; Jeon, M.; Kim, C.; Wang, L.V.; Zou, J. Handheld photoacoustic tomography probe built using optical-fiber parallel acoustic delay lines. J. Biomed. Opt.
**2014**, 19, 086007. [Google Scholar] [CrossRef] [PubMed][Green Version] - Li, G.; Li, L.; Zhu, L.; Xia, J.; Wang, L.V. Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array. J. Biomed. Opt.
**2015**, 20, 066010. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhang, P.; Li, L.; Lin, L.; Hu, P.; Shi, J.; He, Y.; Zhu, L.; Zhou, Y.; Wang, L.V. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J. Biophotonics
**2018**, 11, e201700024. [Google Scholar] [CrossRef] [PubMed] - Jo, J.; Tian, C.; Xu, G.; Sarazin, J.; Schiopu, E.; Gandikota, G.; Wang, X. Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection. Photoacoustics
**2018**, in press. [Google Scholar] [CrossRef] - Lin, L.; Xia, J.; Wong, T.T.; Li, L.; Wang, L.V. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J. Biomed. Opt.
**2015**, 20, 016019. [Google Scholar] [CrossRef] [PubMed] - Wang, J.; Wang, Y. An Efficient Compensation Method for Limited-View Photoacoustic Imaging Reconstruction Based on Gerchberg–Papoulis Extrapolation. Appl. Sci.
**2017**, 7, 505. [Google Scholar] [CrossRef] - Li, L.; Zhu, L.; Ma, C.; Lin, L.; Yao, J.; Wang, L.; Maslov, K.; Zhang, R.; Chen, W.; Shi, J.; et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng.
**2017**, 1, 0071. [Google Scholar] [CrossRef] [PubMed][Green Version] - Matthews, T.P.; Anastasio, M.A. Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements. Inverse Probl.
**2017**, 33, 124002. [Google Scholar] [CrossRef] [PubMed] - Matthews, T.P.; Wang, K.; Li, C.; Duric, N.; Anastasio, M.A. Regularized dual averaging image reconstruction for full-wave ultrasound computed tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2017**, 64, 811–825. [Google Scholar] [CrossRef] [PubMed] - Xu, M.; Wang, L.V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E
**2005**, 71, 016706. [Google Scholar] [CrossRef] [PubMed] - Egolf, D.M.; Chee, R.K.; Zemp, R.J. Sparsity-based reconstruction for super-resolved limited-view photoacoustic computed tomography deep in a scattering medium. Opt. Lett.
**2018**, 43, 2221–2224. [Google Scholar] [CrossRef] [PubMed] - Dean-Ben, X.L.; Buehler, A.; Ntziachristos, V.; Razansky, D. Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging
**2012**, 31, 1922–1928. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.; Wang, Y.; Zhang, C. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction. Ultrasonics
**2012**, 52, 1046–1055. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.; Wang, Y.; Zhang, C. Efficient discrete cosine transform model–based algorithm for photoacoustic image reconstruction. J. Biomed. Opt.
**2013**, 18, 066008. [Google Scholar] [CrossRef] [PubMed] - Zhang, C.; Zhang, Y.; Wang, Y. A photoacoustic image reconstruction method using total variation and nonconvex optimization. Biomed. Eng. Online
**2014**, 13, 117. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mozaffarzadeh, M.; Mahloojifar, A.; Nasiriavanaki, M.; Orooji, M. Model-based photoacoustic image reconstruction using compressed sensing and smoothed L0 norm. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2018, International Society for Optics and Photonics, San Francisco, CA, USA, 27 January–1 February 2018; Volume 10494, p. 104943Z. [Google Scholar]
- Guo, Z.; Li, C.; Song, L.; Wang, L.V. Compressed sensing in photoacoustic tomography in vivo. J. Biomed. Opt.
**2010**, 15, 021311. [Google Scholar] [CrossRef] [PubMed][Green Version] - Provost, J.; Lesage, F. The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging
**2009**, 28, 585–594. [Google Scholar] [CrossRef] [PubMed] - Rosenthal, A.; Razansky, D.; Ntziachristos, V. Quantitative optoacoustic signal extraction using sparse signal representation. IEEE Trans. Med. Imaging
**2009**, 28, 1997–2006. [Google Scholar] [CrossRef] [PubMed] - Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory
**2006**, 52, 1289–1306. [Google Scholar] [CrossRef] - Ramirez-Giraldo, J.; Trzasko, J.; Leng, S.; Yu, L.; Manduca, A.; McCollough, C.H. Nonconvex prior image constrained compressed sensing (NCPICCS): Theory and simulations on perfusion CT. Med. Phys.
**2011**, 38, 2157–2167. [Google Scholar] [CrossRef] [PubMed][Green Version] - Xi, Y.; Zhao, J.; Bennett, J.R.; Stacy, M.R.; Sinusas, A.J.; Wang, G. Simultaneous CT-MRI reconstruction for constrained imaging geometries using structural coupling and compressive sensing. IEEE Trans. Biomed. Eng.
**2016**, 63, 1301–1309. [Google Scholar] [CrossRef] [PubMed] - Qin, T.; Wang, X.; Qin, Y.; Wan, G.; Witte, R.S.; Xin, H. Quality improvement of thermoacoustic imaging based on compressive sensing. IEEE Antennas Wirel. Propag. Lett.
**2015**, 14, 1200–1203. [Google Scholar] [CrossRef] - Meng, J.; Wang, L.V.; Liang, D.; Song, L. In vivo optical-resolution photoacoustic computed tomography with compressed sensing. Opt. Lett.
**2012**, 37, 4573–4575. [Google Scholar] [CrossRef] [PubMed] - Liu, Q.; Wang, S.; Ying, L.; Peng, X.; Zhu, Y.; Liang, D. Adaptive dictionary learning in sparse gradient domain for image recovery. IEEE Trans. Image Process.
**2013**, 22, 4652–4663. [Google Scholar] [CrossRef] [PubMed] - Zhou, W.; Cai, J.F.; Gao, H. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography. Inverse Probl.
**2013**, 29, 125006. [Google Scholar] [CrossRef] - Duarte-Carvajalino, J.M.; Sapiro, G. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process.
**2009**, 18, 1395–1408. [Google Scholar] [CrossRef] [PubMed] - Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE
**1979**, 67, 786–804. [Google Scholar] [CrossRef] - Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; Volume 15, pp. 10–5244. [Google Scholar]
- Adabi, S.; Mohebbikarkhoran, H.; Mehregan, D.; Conforto, S.; Nasiriavanaki, M. An intelligent despeckling method for swept source optical coherence tomography images of skin. In Proceedings of the Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, International Society for Optics and Photonics, Orlando, FL, USA, 13 March 2017; Volume 10137, p. 101372B. [Google Scholar]

**Figure 1.**Block diagram of the proposed method. All the italic letters have been described in the text.

**Figure 3.**Low-cost photoacoustic computed tomography (LC-PACT) system diagram comprised of an Nd:YAG 30Hz Spectra Physics laser, an optical parametric oscillator (OPO), a circular ring, a DC supply for the motor driver, an NI DAQ, an NI trigger, a servo motor, a motor gear, a three-axis translation stage for phantom, and a transducer-amplifier unit.

**Figure 4.**Results of reconstruction algorithms on the phantom data acquired from our PACT system. Different rows show different number of views, 30, 60, 90, and 120, and columns show different reconstruction methods, BP, sparse with basis WT, sparse with basis WT+TV, and sparse with the proposed sparsifying method.

**Figure 5.**Results of reconstruction algorithms on the Shepp–Logan synthetic phantom for 60 view angles and different reconstruction algorithms.

**Figure 6.**Quantitative evaluation, (

**a**) EPI and (

**b**) PSNR, of the performance of four reconstruction algorithms with different number of view angles.

**Table 1.**Specification of the experimental setup presented in Figure 2.

Transducer | 5 MHz |

Laser energy | 20 mJ/cm^{2} |

Laser pulse width | 7 ns |

Laser rep-rate | 30 Hz |

Wavelength | 532 nm |

Amplifier | ZFL500LN |

DAQ | National instrument |

Algorithm | BP | Sparse (WT) | Sparse (WT+TV) | Proposed |
---|---|---|---|---|

Execution Time (sec) | 18.99 | 387.28 | 369.79 | 547.30 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Omidi, P.; Zafar, M.; Mozaffarzadeh, M.; Hariri, A.; Haung, X.; Orooji, M.; Nasiriavanaki, M. A Novel Dictionary-Based Image Reconstruction for Photoacoustic Computed Tomography. *Appl. Sci.* **2018**, *8*, 1570.
https://doi.org/10.3390/app8091570

**AMA Style**

Omidi P, Zafar M, Mozaffarzadeh M, Hariri A, Haung X, Orooji M, Nasiriavanaki M. A Novel Dictionary-Based Image Reconstruction for Photoacoustic Computed Tomography. *Applied Sciences*. 2018; 8(9):1570.
https://doi.org/10.3390/app8091570

**Chicago/Turabian Style**

Omidi, Parsa, Mohsin Zafar, Moein Mozaffarzadeh, Ali Hariri, Xiangzhi Haung, Mahdi Orooji, and Mohammadreza Nasiriavanaki. 2018. "A Novel Dictionary-Based Image Reconstruction for Photoacoustic Computed Tomography" *Applied Sciences* 8, no. 9: 1570.
https://doi.org/10.3390/app8091570