Phase-Coded and Noise-Based Brillouin Optical Correlation-Domain Analysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Phase-Coded Brillouin Optical Correlation-Domain Analysis
2.1. Principle of Operation
2.2. Optical Signal-to-Noise Ratio and the Choice of Codes
2.3. The Overlay of Pump Pulses
2.4. Combination of Amplitude and Phase Sequence Coding
2.5. Double Pulse-Pair Analysis
2.6. Transient Analysis of the Brillouin Signal Wave
2.7. Applications of Phase-Coded Brillouin Optical Correlation-Domain Analysis
3. Brillouin Optical Correlation-Domain Analysis Based on Amplified Spontaneous Emission Noise
3.1. Principle of Operation
3.2. Distributed Brillouin Analysis over Planar Photonic Waveguides
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kurashima, T.; Horiguchi, T.; Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 1990, 15, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Nikles, M.; Thévenaz, L.; Robert, P.A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett. 1996, 21, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Fellay, A.; Thévenaz, L.; Facchini, M.; Niklès, M.; Robert, P.A. Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution. In Proceedings of the 12th International Conference on Optical Fiber Sensors (OFS-12), Williamsburg, VA, USA, 28–31 October 1997. [Google Scholar]
- Lecoeuche, V.; Webb, D.J.; Pannell, C.N.; Jackson, D.A. Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time. Opt. Lett. 2000, 25, 156–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.W.; Colpitts, B.G.; Brown, K. Distributed sensor based on dark-pulse Brillouin scattering. IEEE Photonic Technol. Lett. 2005, 17, 1501–1503. [Google Scholar] [CrossRef]
- Wang, F.; Bao, X.; Chen, L.A.; Li, Y.; Snoddy, J.; Zhang, X. Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor. Opt. Lett. 2008, 33, 2707–2709. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bao, X.; Li, Y.; Chen, L.A. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Express 2008, 16, 21616–21625. [Google Scholar] [CrossRef] [PubMed]
- Foaleng Mafang, S.; Tur, M.; Beugnot, J.C.; Thevenaz, L. High spatial and spectral resolution long-range sensing using Brillouin echoes. J. Lightwave Technol. 2010, 28, 2993–3003. [Google Scholar] [CrossRef]
- Sperber, T.; Eyal, A.; Tur, M.; Thevenaz, L. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing. Opt. Express 2010, 18, 8671–8679. [Google Scholar] [CrossRef] [PubMed]
- Beugnot, J.C.; Tur, M.; Foaleng Mafang, S.; Thevenaz, L. Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing. Opt. Express 2011, 19, 7381–7397. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Chen, L.A. Recent progress in Brillouin scattering based fiber sensors. Sensors 2011, 11, 4152–4187. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, H.; Chen, L.A.; Bao, X. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 2012, 51, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Hotate, K. Measurement of Brillouin gain spectrum distribution along an optical fiber with a high spatial resolution using a novel correlation-based technique: demonstration of 45 cm spatial resolution. In Proceedings of the 13th International Conference on Optical Fiber Sensors (OFS-13), Kyongju, Korea, 12–16 April 1999. [Google Scholar]
- Hotate, K.; Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation. IEICE Trans. Electron. 2000, E83-C, 405–412. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Song, K.Y.; He, Z.; Hotate, K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis. Opt. Lett. 2006, 31, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; He, Z.Y.; Hotate, K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme. Opt. Express 2010, 18, 5926–5933. [Google Scholar] [CrossRef] [PubMed]
- Zadok, A.; Antman, Y.; Primrov, N.; Denisov, A.; Sancho, J.; Thévenaz, L. Random-access distributed fiber sensing. Laser Photonics Rev. 2012, 6, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- London, Y.; Antman, Y.; Preter, E.; Levanon, N.; Zadok, A. Brillouin optical correlation domain analysis addressing 440,000 resolution points. J. Lightwave Technol. 2016, 34, 4421–4429. [Google Scholar] [CrossRef]
- Denisov, A.; Soto, M.A.; Thevenaz, L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: Theoretical analysis and experimental demonstration. Light Sci. Appl. 2016, 5, e16074. [Google Scholar] [CrossRef]
- Antman, Y.; Levanon, N.; Zadok, A. Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves. Opt. Lett. 2012, 37, 5259–5261. [Google Scholar] [CrossRef] [PubMed]
- Elooz, D.; Antman, Y.; Levanon, N.; Zadok, A. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Opt. Express 2014, 22, 6453–6463. [Google Scholar] [CrossRef] [PubMed]
- Shlomi, O.; Preter, E.; Ba, D.; London, Y.; Antman, Y.; Zadok, A. Double-pulse pair Brillouin optical correlation-domain analysis. Opt. Express 2016, 24, 26867–26876. [Google Scholar] [CrossRef] [PubMed]
- Preter, E.; Ba, D.; London, Y.; Shlomi, O.; Antman, Y.; Zadok, A. High-resolution Brillouin optical correlation domain analysis with no spectral scanning. Opt. Express 2016, 24, 27253–27267. [Google Scholar] [CrossRef] [PubMed]
- London, Y.; Antman, Y.; Cohen, R.; Kimelfeld, N.; Levanon, N.; Zadok, A. High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding. Opt. Express 2014, 22, 27144–27158. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y.; London, Y.; Preter, E.; Antman, Y.; Diamandi, H.H.; Silbiger, M.; Adler, G.; Levenberg, E.; Shalev, D.; Zadok, A. Brillouin Optical Correlation Domain Analysis in Composite Material Beams. Sensors 2017, 17, 2266. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.H.; Seo, D.C.; Kwon, I.B. Detecting impact traces on a composite pressure vessel with aluminum-coating optical fiber using a phase-modulated BOCDA sensor. Compos. Sci. Technol. 2017, 142, 264–274. [Google Scholar] [CrossRef]
- Choi, B.H.; Kwon, I.B. Strain pattern detection of composite cylinders using optical fibers after low velocity impacts. Compos. Sci. Technol. 2018, 154, 64–75. [Google Scholar] [CrossRef]
- Chow, D.M.; Tchahame, J.C.; Denisov, A.; Beugnot, J.C.; Sylvestre, T.; Li, L.; Ahmad, R.; Rochette, M.; Tow, K.H.; Soto, M.A.; Thévenaz, L. Mapping the Uniformity of Optical Microwires Using Phase-Correlation Brillouin Distributed Measurements. In Proceedings of the Frontiers in Optics Conference (FiO), San Jose, CA, USA, 18–22 October 2015. [Google Scholar]
- Chow, D.M.; Beugnot, J.C.; Godet, A.; Huy, K.P.; Soto, M.A.; Thévenaz, L. Local activation of surface and hybrid acoustic waves in optical microwires. Opt. Lett. 2018, 43, 1487–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, R.; London, Y.; Antman, Y.; Zadok, A. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission. Opt. Express 2014, 22, 12070–12078. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Statistical Optics; Wiley Classics Library Edition; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Zarifi, A.; Stiller, B.; Merklein, M.; Li, N.; Vu, K.; Choi, D.-Y.; Ma, P.; Madden, S.J.; Eggleton, B.J. Highly localized distributed Brillouin scattering response in a photonic integrated circuit. Appl. Phys. Lett. Photonics 2018, 3, 036101. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, C.; Zhang, M.; Liu, Y.; Wu, C.; Wang, Y. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature. Opt. Express 2018, 26, 6962–6972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Zhang, M.; Zhang, Q.; Li, M.; Wu, C.; Qiao, L.; Wang, Y. Time-gated chaotic Brillouin optical correlation domain analysis. Opt. Express 2018, 26, 17597–17607. [Google Scholar] [CrossRef] [PubMed]
- Antman, Y.; Primerov, N.; Sancho, J.; Thevenaz, L.; Zadok, A. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps. Opt. Express 2012, 20, 7807–7821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Amram, A.; Stern, Y.; London, Y.; Antman, Y.; Zadok, A. Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms. Opt. Express 2015, 23, 28244–28257. [Google Scholar] [CrossRef] [PubMed]
- Golomb, S.W. Two-valued sequences with perfect periodic autocorrelation. IEEE Trans. Aerosp. Electron. Syst. 1992, 28, 383–386. [Google Scholar] [CrossRef]
- Antman, Y.; Yaron, L.; Langer, T.; Tur, M.; Zadok, A. Variable delay of Gbit/s data using coded Brillouin dynamic gratings. In Proceedings of the Advances in Slow and Fast Light VII Conference, SPIE Photonics West, San Francisco, CA, USA, 21–26 January 2014. [Google Scholar]
- Antman, Y.; Yaron, L.; Langer, T.; Tur, M.; Levanon, N.; Zadok, A. Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes. Opt. Lett. 2013, 38, 4701–4704. [Google Scholar] [CrossRef] [PubMed]
- Sancho, J.; Primerov, N.; Chin, S.; Antman, Y.; Zadok, A.; Sales, S.; Thévenaz, L. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Opt. Express 2012, 20, 6157–6162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elooz, D.; Antman, Y.; Zadok, A. Combined time-domain and correlation-domain Brillouin analysis with 1600 meters range and 2 centimeters resolution. In Proceedings of the 23rd Optical Fiber Sensors Conference (OFS-23), Santander, Spain, 2–6 June 2014. [Google Scholar]
- Denisov, A. Brillouin Dynamic Gratings in Optical Fibres for Distributed Sensing and Advanced Optical Signal Processing. Doctoral Dissertation, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 10 September 2015. [Google Scholar]
- Ryu, G.; Kim, G.-T.; Song, K.Y.; Lee, S.B.; Lee, K. Brillouin Optical Correlation Domain Analysis Enhanced by Time-Domain Data Processing for Concurrent Interrogation of Multiple Sensing Points. J. Lightwave Technol. 2017, 35, 5311–5316. [Google Scholar] [CrossRef]
- Alasia, D.; González Herráez, M.; Abrardi, L.; Martin-López, S.; Thévenaz, L. Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering. In Proceedings of the 17th Optical Fiber Sensors Conference, 23 May 2005; SPIE: Bellingham WA, USA, 2005. [Google Scholar]
- Minardo, A.; Bernini, R.; Zeni, L. A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors. IEEE Sens. J. 2009, 9, 633–634. [Google Scholar] [CrossRef]
- Levanon, N. Noncoherent pulse compression. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 756–765. [Google Scholar] [CrossRef]
- Florez, O.; Jarschel, P.F.; Espinel, Y.A.; Cordeiro, C.M.B.; Alegre, T.M.; Wiederhecker, G.S.; Dainese, P. Brillouin scattering self-cancellation. Nat. Commun. 2016, 7, 11759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godet, A.; Ndao, A.; Sylvestre, T.; Pecheur, V.; Lebrun, S.; Pauliat, G.; Beugnot, J.C.; Huy, K.P. Brillouin spectroscopy of optical microfibers and nanofibers. Optica 2017, 4, 1232–1238. [Google Scholar] [CrossRef]
- Santagiustina, M.; Ursini, L. Dynamic Brillouin gratings permanently sustained by chaotic lasers. Opt. Lett. 2012, 37, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Pant, R.; Poulton, C.G.; Choi, D.-Y.; Mcfarlane, H.; Hile, S.; Li, E.; Thevenaz, L.; Luther-Davies, B.; Madden, S.J.; Eggleton, B.J. On-chip stimulated Brillouin scattering. Opt. Express 2011, 19, 8285–8290. [Google Scholar] [CrossRef] [PubMed]
- Poulton, C.G.; Pant, R.; Eggleton, B.J. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides. J. Opt. Soc. Am. B 2013, 30, 2657–2664. [Google Scholar] [CrossRef]
- Choudhary, A.; Morrison, B.; Aryanfar, I.; Shahnia, S.; Pagani, M.; Liu, Y.; Vu, K.; Madden, S.J.; Marpaung, D.; Eggleton, B.J. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J. Lightwave Technol. 2017, 35, 846–854. [Google Scholar] [CrossRef]
- Morrison, B.; Casas-Bedoya, A.; Ren, G.; Vu, K.; Liu, Y.; Zarifi, A.; Nguyen, T.G.; Choi, D.-Y.; Marpaung, D.; Madden, S.J.; et al. Compact Brillouin devices through hybrid integration on silicon. Optica 2017, 4, 847–854. [Google Scholar] [CrossRef]
- Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser Photonics Rev. 2013, 7, 506–538. [Google Scholar] [CrossRef]
- Merklein, M.; Stiller, B.; Vu, K.; Madden, S.J.; Eggleton, B.J. A chip-integrated coherent photonic-phononic memory. Nat. Commun. 2017, 8, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morosi, J.; Ferrarlo, M.; Boffi, P.; Martinelli, M. Double slope-assisted Brillouin optical correlation domain analysis. In Proceedings of the Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017), Munich, Germany, 25–29 June 2017. [Google Scholar]
- Bao, X.; Chen, L. Recent progress in distributed fiber-optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Kippenberg, T.J.; Vahala, K.J. Cavity optomechanics: back-action at the mesoscale. Science 2008, 321, 1172–1176. [Google Scholar] [CrossRef] [PubMed]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Modern Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef] [Green Version]
- Van Laer, R.; Baets, R.; van Thourhout, D. Unifying Brillouin scattering and cavity optomechanics. Phys. Rev. A 2016, 93, 053828. [Google Scholar] [CrossRef]
- Tomes, M.; Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 2009, 102, 113601. [Google Scholar] [CrossRef] [PubMed]
- Bahl, G.; Zehnpfennig, J.; Tomes, M.; Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nat. Commun. 2011, 2, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.; Qiu, W.; Jarecki, R.; Cox, J.A.; Olsson, R.H., III; Starbuck, A.; Wang, Z.; Rakich, P.T. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 2013, 4, 2943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittlaus, E.A.; Otterstrom, N.T.; Rakich, P.T. On-chip inter-modal Brillouin scattering. Nat. Commun. 2017, 8, 15819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Laer, R.; Kuyken, B.; van Thourhout, D.; Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photonics 2015, 9, 199–203. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadok, A.; Preter, E.; London, Y. Phase-Coded and Noise-Based Brillouin Optical Correlation-Domain Analysis. Appl. Sci. 2018, 8, 1482. https://doi.org/10.3390/app8091482
Zadok A, Preter E, London Y. Phase-Coded and Noise-Based Brillouin Optical Correlation-Domain Analysis. Applied Sciences. 2018; 8(9):1482. https://doi.org/10.3390/app8091482
Chicago/Turabian StyleZadok, Avi, Eyal Preter, and Yosef London. 2018. "Phase-Coded and Noise-Based Brillouin Optical Correlation-Domain Analysis" Applied Sciences 8, no. 9: 1482. https://doi.org/10.3390/app8091482
APA StyleZadok, A., Preter, E., & London, Y. (2018). Phase-Coded and Noise-Based Brillouin Optical Correlation-Domain Analysis. Applied Sciences, 8(9), 1482. https://doi.org/10.3390/app8091482