Solution-Processed CdTe Thin-Film Solar Cells Using ZnSe Nanocrystal as a Buffer Layer
Abstract
1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Nanocrystal (NC) Synthesis
2.3. Device Fabrication
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lan, X.; Voznyy, O.; Arquer, F.P.G.; Liu, M.; Xu, J.; Proppe, A.H.; Walters, G.; Fan, F.; Tan, H.; Liu, M.; et al. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 2016, 16, 4630–4634. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X.; Zhitomirsky, D.; Sargent, E.H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase-halide passivation. Adv. Mater. 2012, 24, 6295–6299. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Wu, R.; Xie, Y.; Tan, Q.; Qin, D.; Wu, H.; Huang, W. Recent Progress on Solution-Processed CdTe Nanocrystals Solar Cells. Appl. Sci. 2016, 6, 197. [Google Scholar] [CrossRef]
- Yang, H.F.; Zhang, J.C.; Zhang, C.F.; Chang, J.J.; Lin, Z.H.; Chen, D.Z.; Xi, H.; Hao, Y. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation. Materials 2017, 10, 837. [Google Scholar] [CrossRef] [PubMed]
- Vivo, P.; Salunke, J.K.; Priimagi, A. Hole-Transporting Materials for Printable Perovskite Solar Cells. Materials 2017, 10, 1087. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Kim, Y.; Choi, J.M.; de Arquer, F.P.G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.W.; Proppe, A.H.; Quintero-Bermudez, R. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange. Adv. Mater. 2017, 29, 1703627. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.K.; Sivashanmugan, K.; Guo, T.F.; Wen, T.C. Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO. Materials 2017, 17, 378. [Google Scholar] [CrossRef] [PubMed]
- Gur, I.; Fromer, N.A.; Geier, M.L.; Alivisatos, A.P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.; Townsend, T.K.; Lumb, M.P.; Tischler, J.G.; Foos, E.E. Sintered CdTe Nanocrystal Thin Films: Determination of Optical Constants and Applications in Novel Inverted Heterojunction Solar Cells. IEEE Trans. Nanotechnol. 2014, 13, 551–556. [Google Scholar] [CrossRef]
- Liu, H.; Tian, Y.Y.; Zhang, Y.J.; Gao, K.; Lu, K.K.; Wu, R.F.; Qin, D.H.; Wu, H.B.; Peng, Z.S.; Hou, L.T.; et al. Solution processed CdTe/CdSe nanocrystal solar cells with more than 5.5% efficiency by using an inverted device structure. J. Mater. Chem. C 2015, 3, 4227–4234. [Google Scholar] [CrossRef]
- Zeng, Q.; Hu, L.; Cui, J.; Feng, T.; Du, X.; Jin, G.; Liu, F.; Ji, T.; Li, F.; Zhang, H.; Yang, B. High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination. ACS Appl. Mater. Interfaces 2017, 9, 31345–31351. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. 2018, 26, 3–12. [Google Scholar] [CrossRef]
- Zhang, H.; Kurley, J.M.; Russell, J.C.; Jang, J.; Talapin, D.V. Solution-Processed, Ultrathin Solar Cells from CdCl3−-Capped CdTe Nanocrystals: The Multiple Roles of CdCl3− Ligands. Am. Chem. Soc. 2016, 138, 7464–7467. [Google Scholar] [CrossRef] [PubMed]
- Panthani, M.G.; Kurley, J.M.; Crisp, R.W.; Dietz, T.C.; Ezzyat, T.; Luther, J.M.; Talapin, D.V. High Efficiency Solution Processed Sintered CdTe Nanocrystal Solar Cells: The Role of Interfaces. Nano Lett. 2014, 14, 670–675. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, B.I.; Gengenbach, T.R.; Watkins, S.E.; Mulvaney, P.; Jasieniak, J.J. Solution-processing of ultra-thin CdTe/ZnO nanocrystal solar cells. Thin Solid Films 2014, 558, 365–373. [Google Scholar] [CrossRef]
- Kurley, J.M.; Panthani, M.G.; Crisp, R.W.; Nanayakkara, S.U.; Pach, G.F.; Reese, M.O.; Hudson, M.H.; Dolzhnikov, D.S.; Tanygin, V.; Luther, J.M. Transparent Ohmic Contacts for Solution-Processed, Ultrathin CdTe Solar Cells. ACS Energy Lett. 2017, 2, 270–278. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.K. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: Fundamental and critical aspects. Energy Environ. Sci. 2014, 7, 45–102. [Google Scholar] [CrossRef]
- Crisp, R.W.; Panthani, M.G.; Rance, W.L.; Duenow, J.N.; Parilla, P.A.; Callahan, R.; Dabney, M.S.; Berry, J.J.; Talapin, D.V.; Luther, J.M. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics. ACS Nano 2014, 8, 9063–9072. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.W.; Liu, W.G.; Heng, J.X.; Zhou, W.F.; Chen, Y.R.; Wen, S.Y.; Qin, D.H.; Hou, L.T.; Wang, D.; Xu, H. Solution-processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals. Coatings 2018, 8, 26. [Google Scholar] [CrossRef]
- Townsend, T.K.; Foos, E.E. Fully solution processed all inorganic nanocrystal solar cells. Phys. Chem. Chem. Phys. 2014, 16, 16458–16464. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Tan, Q.X.; Zhang, Z.T.; Lu, K.K.; Li, M.Z.; Xu, W.; Qin, D.H.; Zhang, Y.D.; Hou, L.T.; Wu, H.B. Improving performance in CdTe/CdSe nanocrystals solar cells by using bulk nano-heterojunctions. J. Mater. Chem. C 2016, 4, 6483–6491. [Google Scholar] [CrossRef]
- Wen, S.Y.; Li, M.Z.; Yang, J.Y.; Mei, X.L.; Wu, B.; Liu, X.L.; Heng, J.X.; Qin, D.H.; Hou, L.T.; Xu, W.; et al. Rationally Controlled Synthesis of CdSexTe1−x Alloy Nanocrystals and Their Application in Efficient Graded Bandgap Solar Cells. Nanomaterials 2017, 7, 380. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Z.; Tan, Q.X.; Liu, S.W.; Qin, D.H.; Mo, Y.Q.; Hou, L.T.; Liu, A.L.; Wu, H.B.; Ma, Y.G. High-efficiency solution-processed CdTe nanocrystals solar cells incorporating a novel crosslinkable polymer as the hole transport layer. Nano Energy 2018, 46, 150–157. [Google Scholar] [CrossRef]
- Paudel, N.R.; Yan, Y.F. Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Appl. Phys. Lett. 2014, 105, 183510. [Google Scholar] [CrossRef]
- Poplawsky, J.D.; Guo, W.; Paudel, N.; Ng, A.; More, K.; Leonard, D.; Yan, Y.F. Structural and compositional dependence of the CdTexSe1−x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 2016, 7, 12537. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Chen, Z.; Liu, F.; Zeng, Q.; Jin, G.; Li, F.; Yao, D.; Yang, B. Improvement in open-circuit voltage of thin film solar cells from aqueous nanocrystals by interface engineering. ACS. Appl. Mater. Interfaces 2016, 8, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Z.; Liu, X.Y.; Wen, S.Y.; Liu, S.W.; Heng, J.X.; Qin, D.H.; Hou, L.T.; Wu, H.B.; Xu, W.; Huang, W.B. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuir Voltage Based on Sb-Doped TiO2 Electron Acceptor Materials. Nanomaterials 2017, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Spalatu, N.; Serban, D.; Potlog, T. ZnSe films prepared by the close-spaced sublimation and their influence on ZnSe/CdTe solar cell performance. In Proceedings of the International Semiconductor Conference, Sinaia, Romania, 17–19 October 2011; pp. 451–454. [Google Scholar]
- Acharya, S.; Bangera, K.V.; Shivakumar, G.K. Electrical characterization of vacuum-deposited p-CdTe/n-ZnSe heterojunctions. Appl Nanosci. 2015, 5, 1003–1007. [Google Scholar] [CrossRef]
- Chen, H.S.; Lo, B.; Hwang, J.Y.; Chang, G.Y.; Chen, C.M.; Tasi, S.J.; Wang, S.J.J. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO. J. Phys. Chem. B 2004, 108, 17119–17123. [Google Scholar] [CrossRef]
- Kumar, S.; Nann, T. Shape Control of II–VI Semiconductor Nanomaterials. Semicond. Nanocryst. 2006, 2, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Kanevce, A.; Sites, J.R. Emitter/absorber interface of CdTe solar cells. J. Appl. Phys. 2016, 119, 223004. [Google Scholar] [CrossRef]
- Paul, S.; Grover, S.; Repins, I.L.; Keyes, B.M.; Contreras, M.A.; Ramanathan, K.; Noufi, R.; Zhao, Z.B.; Liao, F.; Li, J.V. Analysis of Back-Contact Interface Recombination in Thin-Film Solar Cells. IEEE J. Photovolt. 2018, 8, 871–878. [Google Scholar] [CrossRef]
- Hegedus, S.S.; Shafarman, W.N. Thin-Film Solar Cells: Device Measurements and Analysis. Prog. Photovolt. 2004, 12, 155–176. [Google Scholar] [CrossRef]
- Siebentritt, S.; Kampschulte, T.; Bauknecht, A.; Blieske, U.; Harneit, W.; Fiedeler, U.; Lux-Steiner, M. Cd-free buffer layers for CIGS solar cells prepared by a dry process. Sol. Energy Mater. Sol. Cells 2002, 70, 447–457. [Google Scholar] [CrossRef]
- Friedlmeier, T.M. Improved Photocurrent in Cu(In,Ga)Se2 Solar Cells: From 20.8% to 21.7% Efficiency With CdS Buffer and 21.0% Cd-free. IEEE J. Photovolt. 2015, 5, 1487–1491. [Google Scholar] [CrossRef]
- Kagan, C.R.; Lifshitz, E.; Sargent, E.H.; Talapin, D.V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523. [Google Scholar] [CrossRef] [PubMed]
- Dharmadasa, I.M.; Ojo, A.A.; Salim, H.I.; Dharmadasa, R. Next Generation Solar Cells Based on Graded Bandgap Device Structures Utilising Rod-Type Nano-Materials. Energies 2015, 8, 5440–5458. [Google Scholar] [CrossRef]
ZnSe NCs (nanocrystals) Thickness (CdTe NCs Annealing at 350 °C) | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | Rs (Ω·cm2) | Rsh (Ω·cm2) |
---|---|---|---|---|---|---|
25 nm | 3.58 | 0.40 | 30.17 | 0.38 | 67.56 | 148.18 |
60 nm | 4.09 | 0.37 | 29.96 | 0.45 | 64.67 | 132.51 |
80 nm | 6.03 | 0.44 | 38.04 | 1.02 | 35.84 | 219.07 |
110 nm | 10.35 | 0.56 | 33.30 | 1.93 | 26.08 | 120.76 |
125 nm | 5.61 | 0.39 | 37.83 | 0.84 | 33.27 | 250.40 |
CdTe NCs annealing temperature (ZnSe thickness 110 nm) | ||||||
CdTe 300 °C | 7.07 | 0.41 | 33.89 | 0.99 | 32.9 | 115.80 |
CdTe 330 °C | 10.35 | 0.51 | 33.3 | 1.70 | 12.55 | 106.72 |
CdTe 370 °C | 11.94 | 0.63 | 40.79 | 3.07 | 23.50 | 246.15 |
CdTe 400 °C | 11.23 | 0.53 | 30.49 | 1.81 | 32.32 | 79.59 |
1,2-ethanedithiol (EDT) treatment (CdTe NCs annealing at 370 °C with 110 nm ZnSe) | ||||||
W EDT | 13.55 | 0.64 | 47.33 | 3.58 | 19.48 | 251.00 |
WO EDT | 11.94 | 0.63 | 40.79 | 3.07 | 23.50 | 246.15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Mei, X.; Liu, X.; Wu, B.; Yang, J.; Yang, J.; Xu, W.; Hou, L.; Qin, D.; Wang, D. Solution-Processed CdTe Thin-Film Solar Cells Using ZnSe Nanocrystal as a Buffer Layer. Appl. Sci. 2018, 8, 1195. https://doi.org/10.3390/app8071195
Chen Y, Mei X, Liu X, Wu B, Yang J, Yang J, Xu W, Hou L, Qin D, Wang D. Solution-Processed CdTe Thin-Film Solar Cells Using ZnSe Nanocrystal as a Buffer Layer. Applied Sciences. 2018; 8(7):1195. https://doi.org/10.3390/app8071195
Chicago/Turabian StyleChen, Yanru, Xianglin Mei, Xiaolin Liu, Bin Wu, Junfeng Yang, Junyu Yang, Wei Xu, Lintao Hou, Donghuan Qin, and Dan Wang. 2018. "Solution-Processed CdTe Thin-Film Solar Cells Using ZnSe Nanocrystal as a Buffer Layer" Applied Sciences 8, no. 7: 1195. https://doi.org/10.3390/app8071195
APA StyleChen, Y., Mei, X., Liu, X., Wu, B., Yang, J., Yang, J., Xu, W., Hou, L., Qin, D., & Wang, D. (2018). Solution-Processed CdTe Thin-Film Solar Cells Using ZnSe Nanocrystal as a Buffer Layer. Applied Sciences, 8(7), 1195. https://doi.org/10.3390/app8071195