Coherent Optical Field Manipulation and Optical Information Processing Based on Electromagnetically-Induced Transparency Effect in Pr3+:Y2SiO5 Crystal
Abstract
1. Introduction
2. Materials and Experimental Setup
3. EIT Effect and Light Pulse Storage via Atomic Coherence Gratings
4. Coherent Manipulation on Light Fields via Atomic Coherence Gratings
4.1. Nondegenerate Phase-Conjugate Wave
4.2. Manipulation on Optical Vortexes
4.3. First-Order Subwavelength Interference
4.4. Direct Optical Convolution Operation
5. Controllable Polarization Rotator
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EIT | Electromagnetically-induced transparency |
iCCD | Intensified charge-coupled device |
AOM | Acousto-optic modulator |
FWHM | Full width at half maximum |
OTC | Optical topological charges |
References
- Harris, S.E.; Field, J.E.; Imamoglu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 1990, 64, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Boller, K.; Imamolu, A.; Harris, S.E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 1991, 66, 2593–2596. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.E. Electromagnetically induced transparency. Phys. Today 1997, 50, 36–42. [Google Scholar] [CrossRef]
- Autler, S.H.; Townes, C.H. Stark Effect in Rapidly Varying Fields. Phys. Rev. 1955, 100, 703–722. [Google Scholar] [CrossRef]
- Peng, B.; Ozdemir, S.K.; Chen, W.; Nori, F.; Yang, L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 2014, 5, 5082. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.C.; Li, T.F.; Luo, X.Q.; Zhao, H.; Xiong, W.; Zhang, Y.S.; Chen, Z.; Liu, J.S.; Chen, W.; Nori, F.; et al. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A 2016, 93, 053838. [Google Scholar] [CrossRef]
- Sun, H.C.; Liu, Y.X.; Ian, H.; You, J.Q.; Il’ichev, E.; Nori, F. Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits. Phys. Rev. A 2014, 89, 063822. [Google Scholar] [CrossRef]
- Hau, L.V.; Harris, S.E.; Dutton, Z.; Behroozi, C.H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 1999, 397, 594–598. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633–673. [Google Scholar] [CrossRef]
- Marangos, J.P. Electromagnetically induced transparency. J. Mod. Opt. 1998, 45, 471–503. [Google Scholar] [CrossRef]
- Goldfarb, F.; Lauprêtre, T.; Ruggiero, J.; Bretenaker, F.; Ghosh, J.; Ghosh, R. Electromagnetically-induced transparency, slow light, and negative group velocities in a room temperature vapor of 4He*. Comptes Rendus Phys. 2009, 10, 919–926. [Google Scholar] [CrossRef]
- Amari, A.; Walther, A.; Sabooni, M.; Huang, M.; Kroll, S.; Afzelius, M.; Usmani, I.; Lauritzen, B.; Sangouard, N.; de Riedmatten, H.; et al. Towards an efficient atomic frequency comb quantum memory. J. Lumin. 2010, 130, 1579–1585. [Google Scholar] [CrossRef]
- Bonarota, M.; Le Gouet, J.L.; Moiseev, S.A.; Chaneliere, T. Atomic frequency comb storage as a slow-light effect. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 124002. [Google Scholar] [CrossRef]
- Chaneliere, T.; Ruggiero, J.; Bonarota, M.; Afzelius, M.; Le Gouet, J.L. Efficient light storage in a crystal using an atomic frequency comb. New J. Phys. 2010, 12, 023025. [Google Scholar] [CrossRef]
- Zhang, G.; Bo, F.; Dong, R.; Xu, J. Phase-coupling-induced ultraslow light propagation in solids at room temperature. Phys. Rev. Lett. 2004, 93, 133903. [Google Scholar] [CrossRef] [PubMed]
- Podivilov, E.; Sturman, B.; Shumelyuk, A.; Odoulov, S. Light Pulse Slowing Down up to 0.025 cm/s by Photorefractive Two-Wave Coupling. Phys. Rev. Lett. 2003, 91, 083902. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, M.S.; Lepeshkin, N.N.; Boyd, R.W. Superluminal and slow light propagation in a room-temperature solid. Science 2003, 301, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Piredda, G.; Boyd, R.W. Slow light by means of coherent population oscillations: Laser linewidth effects. J. Eur. Opt. Soc.-Rapid Publ. 2007, 2, 07004. [Google Scholar] [CrossRef]
- McMillan, J.F.; Yang, X.; Panoiu, N.C.; Osgood, R.M.; Wong, C.W. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt. Lett. 2006, 31, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Okawachi, Y.; Bigelow, M.S.; Sharping, J.E.; Zhu, Z.; Schweinsberg, A.; Gauthier, D.J.; Boyd, R.W.; Gaeta, A.L. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 2005, 94, 153902. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dutton, Z.; Behroozi, C.H.; Hau, L.V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 2001, 409, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Turukhin, A.V.; Sudarshanam, V.S.; Shahriar, M.S.; Musser, J.A.; Ham, B.S.; Hemmer, P.R. Observation of Ultraslow and Stored Light Pulses in a Solid. Phys. Rev. Lett. 2001, 88, 023602. [Google Scholar] [CrossRef] [PubMed]
- Vudyasetu, P.K.; Camacho, R.M.; Howell, J.C. Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor. Phys. Rev. Lett. 2008, 100, 123903. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Zhang, G.; Zhai, Z.; Xu, J. Angular multiplexing storage of light pulses and addressable optical buffer memory in Pr3+:Y2SiO5 based on electromagnetically induced transparency. Phys. Rev. A 2009, 80, 033816. [Google Scholar] [CrossRef]
- Eisaman, M.D.; Andre, A.; Massou, F.; Fleischhauer, M.; Zibrov, A.S.; Lukin, M.D. Electromagnetically induced transparency with tunable single-photon pulses. Nature 2005, 438, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jin, X.M.; Yang, J.; Dai, H.N.; Yang, S.J.; Zhao, T.M.; Rui, J.; He, Y.; Jiang, X.; Yang, F.; Pan, G.S.; et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photonics 2011, 5, 628–632. [Google Scholar] [CrossRef]
- Ding, D.S.; Zhou, Z.Y.; Shi, B.S.; Guo, G.C. Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 2013, 4, 2527. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, A.; Veissier, L.; Giner, L.; Giacobino, E.; Maxein, D.; Laurat, J. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 2014, 8, 234–238. [Google Scholar] [CrossRef]
- Hsiao, Y.F.; Tsai, P.J.; Chen, H.S.; Lin, S.X.; Hung, C.C.; Lee, C.H.; Chen, Y.H.; Chen, Y.F.; Yu, I.A.; Chen, Y.C. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency. Phys. Rev. Lett. 2018, 120, 183602. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liu, Y.X.; Yi, S.; Sun, C.P.; Nori, F. Control of photon propagation via electromagnetically induced transparency in lossless media. Phys. Rev. A 2007, 75, 063818. [Google Scholar] [CrossRef]
- Chang, Y.; Shi, T.; Liu, Y.X.; Sun, C.P.; Nori, F. Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 2011, 83, 063826. [Google Scholar] [CrossRef]
- Ian, H.; Liu, Y.x.; Nori, F. Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 2010, 81, 063823. [Google Scholar] [CrossRef]
- Liu, Y.X.; Xu, X.W.; Miranowicz, A.; Nori, F. From blockade to transparency: Controllable photon transmission through a circuit-QED system. Phys. Rev. A 2014, 89, 043818. [Google Scholar] [CrossRef]
- Gu, X.; Huai, S.N.; Nori, F.; Liu, Y.X. Polariton states in circuit QED for electromagnetically induced transparency. Phys. Rev. A 2016, 93, 063827. [Google Scholar] [CrossRef]
- Kuzmich, A.; Bowen, W.P.; Boozer, A.D.; Boca, A.; Chou, C.W.; Duan, L.M.; Kimble, H.J. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 2003, 423, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, A.V.; Jiang, L.; Greiner, M.; Zoller, P.; Lukin, M.D. Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 2008, 100, 093005. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sautenkov, V.A.; Kash, M.M.; Sokolov, A.V.; Welch, G.R.; Rostovtsev, Y.V.; Zubairy, M.S.; Scully, M.O. Optical imaging beyond the diffraction limit via dark states. Phys. Rev. A 2008, 78, 013803. [Google Scholar] [CrossRef]
- Verma, O.N.; Zhang, L.; Evers, J.; Dey, T.N. Optical cloning of arbitrary images beyond the diffraction limits. Phys. Rev. A 2013, 88, 013810. [Google Scholar] [CrossRef]
- Firstenberg, O.; London, P.; Shuker, M.; Ron, A.; Davidson, N. Elimination, reversal and directional bias of optical diffraction. Nat. Phys. 2009, 5, 665–668. [Google Scholar] [CrossRef]
- Firstenberg, O.; Shuker, M.; Davidson, N.; Ron, A. Elimination of the diffraction of arbitrary images imprinted on slow light. Phys. Rev. Lett. 2009, 102, 043601. [Google Scholar] [CrossRef] [PubMed]
- Pugatch, R.; Shuker, M.; Firstenberg, O.; Ron, A.; Davidson, N. Topological stability of stored optical vortices. Phys. Rev. Lett. 2007, 98, 203601. [Google Scholar] [CrossRef] [PubMed]
- Moretti, D.; Felinto, D.; Tabosa, J.W.R. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 2009, 79, 023825. [Google Scholar] [CrossRef]
- Zhai, Z.H.; Li, Z.X.; Xu, J.J.; Zhang, G.Q. Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid. Phys. Rev. A 2013, 88, 035807. [Google Scholar] [CrossRef]
- Li, Y.Q.; Xiao, M. Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms. Opt. Lett. 1996, 21, 1064–1066. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 1996, 21, 1936–1938. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Xia, H.; Yin, G.Y.; Merriam, A.J.; Harris, S.E. Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence. Phys. Rev. Lett. 1996, 77, 4326–4329. [Google Scholar] [CrossRef] [PubMed]
- Ham, B.S.; Shahriar, M.S.; Hemmer, P.R. Enhancement of four-wave mixing and line narrowing by use of quantum coherence in an optically dense double-Lambda solid. Opt. Lett. 1999, 24, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Goorskey, D.; Xiao, M. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett. 2001, 87, 073601. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.E.; Field, J.E.; Kasapi, A. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 1992, 46, R29–R32. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Li, Y.Q.; Jin, S.Z.; Gea-Banacloche, J. Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms. Phys. Rev. Lett. 1995, 74, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Richard, R. Moseley, Sara Shepherd, D.J.F.B.D.S.; Dunn, M.H. Electromagnetically-induced focusing. Phys. Rev. A 1996, 53, 408–415. [Google Scholar]
- Liu, X.J.; Jing, H.; Ge, M.L. Solitons formed by dark-state polaritons in an electromagnetic induced transparency. Phys. Rev. A 2004, 70, 055802. [Google Scholar] [CrossRef]
- Min, X.; Hai, W.; Goorskey, D. Light controlling light with enhanced Kerr nonlinearity. Opt. Photonics News 2002, 13, 44–60. [Google Scholar]
- Lukin, M.D.; Imamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 2001, 413, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Firstenberg, O.; Shuker, M.; Pugatch, R.; Fredkin, D.R.; Davidson, N.; Ron, A. Theory of thermal motion in electromagnetically induced transparency: Effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing. Phys. Rev. A 2008, 77, 043830. [Google Scholar] [CrossRef]
- Heinze, G.; Hubrich, C.; Halfmann, T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 2013, 111, 033601. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Hedges, M.P.; Ahlefeldt, R.L.; Bartholomew, J.G.; Beavan, S.E.; Wittig, S.M.; Longdell, J.J.; Sellars, M.J. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 2015, 517, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Equall, R.W.; Cone, R.L.; Macfarlane, R.M. Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5. Phys. Rev. B 1995, 52, 3963–3969. [Google Scholar] [CrossRef]
- Holliday, K.; Croci, M.; Vauthey, E.; Wild, U.P. Spectral hole-burnning and holography in an Y2SiO5:Pr3+ Crystal. Phys. Rev. B 1993, 47, 14741–14752. [Google Scholar] [CrossRef]
- Nilsson, M.; Rippe, L.; Kröll, S.; Klieber, R.; Suter, D. Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5. Phys. Rev. B 2004, 70, 214116. [Google Scholar] [CrossRef]
- Ham, B.S.; Hemmer, P.; Shahriar, M. Efficient electromagnetically induced transparency in a rare-earth doped crystal. Opt. Commun. 1997, 144, 227–230. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Lukin, M.D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 2000, 84, 5094–5097. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.H.; Dou, Y.L.; Xu, J.J.; Zhang, G.Q. Nondegenerate phase-conjugate wave via stored atomic coherence based on electromagnetically induced transparency in solids. Phys. Rev. A 2011, 83, 043825. [Google Scholar] [CrossRef]
- Flax, S.; O’Donnell, M. Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35, 758–767. [Google Scholar] [CrossRef] [PubMed]
- O’donnell, M.; Flax, S. Phase-aberration correction using signals from point reflectors and diffuse scatterers: Measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35, 768–774. [Google Scholar] [CrossRef] [PubMed]
- He, G.S. Optical phase conjugation: Principles, techniques, and applications. Prog. Quantum Electron. 2002, 26, 131–191. [Google Scholar] [CrossRef]
- Yariv, A. Three-dimensional pictorial transmission in optical fibers. Appl. Phys. Lett. 1976, 28, 88–89. [Google Scholar] [CrossRef]
- Avizonis, P.V.; Hopf, F.A.; Bomberger, W.D.; Jacobs, S.F.; Tomita, A.; Womack, K.H. Optical phase conjugation in a lithium formate crystal. Appl. Phys. Lett. 1977, 31, 435–437. [Google Scholar] [CrossRef]
- Bloom, D.M.; Bjorklund, G.C. Conjugate wave-front generation and image reconstruction by four-wave mixing. Appl. Phys. Lett. 1977, 31, 592–594. [Google Scholar] [CrossRef]
- Hellwarth, R.W. Generation of time-reversed wave fronts by nonlinear refraction. J. Opt. Soc. Am. 1977, 67, 1–3. [Google Scholar] [CrossRef]
- Heer, C.V.; Griffen, N.C. Generation of a phase-conjugate wave in the forward direction with thin Na-vapor cells. Opt. Lett. 1979, 4, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Khyzniak, A.; Kondilenko, V.; Kucherov, Y.; Lesnik, S.; Odoulov, S.; Soskin, M. Phase conjugation by degenerate forward four-wave mixing. J. Opt. Soc. Am. A 1984, 1, 169–175. [Google Scholar] [CrossRef]
- Feinberg, J. Self-pumped, continuous-wave phase conjugator using internal reflection. Opt. Lett. 1982, 7, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Chiao, R.Y.; Townes, C.H.; Stoicheff, B.P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 1964, 12, 592–595. [Google Scholar] [CrossRef]
- He, G.S.; Prasad, P.N. Stimulated Kerr scattering and reorientation work of molecules in liquid CS2. Phys. Rev. A 1990, 41, 2687–2697. [Google Scholar] [CrossRef] [PubMed]
- Koptev, V.G.; Lazaruk, A.M.; Petrovich, I.P.; Rubanov, A.S. Wavefront inversion in superradiance. JETP Lett. 1978, 28, 434–436. [Google Scholar]
- He, G.S.; Cui, Y.; Yoshida, M.; Prasad, P.N. Phase-conjugate backward stimulated emission from a two-photon-pumped lasing medium. Opt. Lett. 1997, 22, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Griffen, N.C.; Heer, C.V. Focusing and phase conjugation of photon echoes in Na vapor. Appl. Phys. Lett. 1978, 33, 865–866. [Google Scholar] [CrossRef]
- Shiren, N.S. Generation of time-reversed optical wave fronts by backward-wave photon echoes. Appl. Phys. Lett. 1978, 33, 299–300. [Google Scholar] [CrossRef]
- Ham, B.S.; Hemmer, P.R.; Shahriar, M.S. Efficient phase conjugation via two-photon coherence in an optically dense crystal. Phys. Rev. A 1999, 59, R2583–R2586. [Google Scholar] [CrossRef]
- Zibrov, A.S.; Matsko, A.B.; Kocharovskaya, O.; Rostovtsev, Y.V.; Welch, G.R.; Scully, M.O. Transporting and Time Reversing Light via Atomic Coherence. Phys. Rev. Lett. 2002, 88, 103601. [Google Scholar] [CrossRef] [PubMed]
- Soskin, M.; Vasnetsov, M. Singular optics. Prog. Opt. 2001, 42, 219–276. [Google Scholar]
- Dennis, M.R.; O’Holleran, K.; Padgett, M.J. Singular Optics: Optical Vortices and Polarization Singularities. Prog. Opt. 2009, 53, 293–363. [Google Scholar]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonic 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Franke-Arnold, S.; Allen, L.; Padgett, M. Advances in optical angular momentum. Laser Photonics Rev. 2008, 2, 299–313. [Google Scholar] [CrossRef]
- Shi, B.S.; Ding, D.S.; Zhang, W. Quantum storage of orbital angular momentum entanglement in cold atomic ensembles. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 032004. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Boto, A.N.; Kok, P.; Abrams, D.S.; Braunstein, S.L.; Williams, C.P.; Dowling, J.P. Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit. Phys. Rev. Lett. 2000, 85, 2733–2736. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.W.; Lundeen, J.S.; Steinberg, A.M. Super-resolving phase measurements with a multiphoton entangled state. Nature 2004, 429, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Walther, P.; Pan, J.W.; Aspelmeyer, M.; Ursin, R.; Gasparoni, S.; Zeilinger, A. De Broglie wavelength of a non-local four-photon state. Nature 2004, 429, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.W.; Dowling, J.P. Quantum lithography: Status of the field. Quantum Inf. Proc. 2012, 11, 891–901. [Google Scholar] [CrossRef]
- Jacobson, J.; Björk, G.; Chuang, I.; Yamamoto, Y. Photonic de Broglie Waves. Phys. Rev. Lett. 1995, 74, 4835–4838. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, E.J.S.; Monken, C.H.; Pádua, S. Measurement of the de Broglie Wavelength of a Multiphoton Wave Packet. Phys. Rev. Lett. 1999, 82, 2868–2871. [Google Scholar] [CrossRef]
- Edamatsu, K.; Shimizu, R.; Itoh, T. Measurement of the Photonic de Broglie Wavelength of Entangled Photon Pairs Generated by Spontaneous Parametric Down-Conversion. Phys. Rev. Lett. 2002, 89, 213601. [Google Scholar] [CrossRef] [PubMed]
- Scarcelli, G.; Valencia, A.; Shih, Y. Two-photon interference with thermal light. Europhys. Lett. 2004, 68, 618–624. [Google Scholar] [CrossRef]
- Xiong, J.; Cao, D.Z.; Huang, F.; Li, H.G.; Sun, X.J.; Wang, K. Experimental Observation of Classical Subwavelength Interference with a Pseudothermal Light Source. Phys. Rev. Lett. 2005, 94, 173601. [Google Scholar] [CrossRef] [PubMed]
- Oppel, S.; Buttner, T.; Kok, P.; von Zanthier, J. Superresolving multiphoton interferences with independent light sources. Phys. Rev. Lett. 2012, 109, 233603. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.L.; Zhang, G.Q. Subwavelength interference with an effective entangled source. Phys. Rev. A 2013, 88, 043838. [Google Scholar] [CrossRef]
- Hong, P.; Zhang, G. Synchronous position two-photon interference of random-phase grating. J. Opt. Soc. Am. A 2015, 32, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Zhang, G. Super-resolved optical lithography with phase controlled source. Phys. Rev. A 2015, 91, 053830. [Google Scholar] [CrossRef]
- Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, J.; Fan, H.; Liu, J.; Zhang, G. High visibility first-order subwavelength interference based on light pulse storage via electromagnetically induced transparency. Sci. Rep. 2017, 7, 2361. [Google Scholar] [CrossRef] [PubMed]
- Brooker, G. Modern Classical Optics; Oxford University: Oxford, UK, 2003. [Google Scholar]
- Li, Z.; Liu, J.; Fan, H.; Zhang, G. Study on Convolution Operation of Optical Information via Quantum Storage. Acta Opt. Sin. 2017, 37, 91–96. [Google Scholar]
- Boileau, J.C.; Gottesman, D.; Laflamme, R.; Poulin, D.; Spekkens, R.W. Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 2004, 92, 017901. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.Z.; Zhang, J.; Yang, D.; Gao, W.B.; Ma, H.X.; Yin, H.; Zeng, H.P.; Yang, T.; Wang, X.B.; Pan, J.W. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 2007, 98, 010505. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.; McLaughlin, S.W.; Merolla, J.M.; Patois, F. Frequency-coded quantum key distribution. Opt. Lett. 2007, 32, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Spedalieri, F.M. Quantum key distribution without reference frame alignment: Exploiting photon orbital angular momentum. Opt. Commun. 2006, 260, 340–346. [Google Scholar] [CrossRef]
- Li, Z.X.; Liu, J.J.; Yu, P.; Zhang, G.Q. Birefringence and polarization rotator induced by electromagnetically induced transparency in rare earth ion-doped crystals. Appl. Phys. B 2016, 122, 109. [Google Scholar] [CrossRef]
- Wielandy, S.; Gaeta, A.L. Coherent Control of the Polarization of an Optical Field. Phys. Rev. Lett. 1998, 81, 3359–3362. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.; Ma, J.; Wang, H.; Peng, K.; Xiao, M. Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency. Phys. Rev. A 2006, 73, 051801(R). [Google Scholar] [CrossRef]
- Drampyan, R.; Pustelny, S.; Gawlik, W. Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization. Phys. Rev. A 2009, 80, 033815. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, Z.; Fan, H.; Zhang, G. Coherent Optical Field Manipulation and Optical Information Processing Based on Electromagnetically-Induced Transparency Effect in Pr3+:Y2SiO5 Crystal. Appl. Sci. 2018, 8, 1179. https://doi.org/10.3390/app8071179
Liu J, Li Z, Fan H, Zhang G. Coherent Optical Field Manipulation and Optical Information Processing Based on Electromagnetically-Induced Transparency Effect in Pr3+:Y2SiO5 Crystal. Applied Sciences. 2018; 8(7):1179. https://doi.org/10.3390/app8071179
Chicago/Turabian StyleLiu, Jianji, Zhixiang Li, Hongming Fan, and Guoquan Zhang. 2018. "Coherent Optical Field Manipulation and Optical Information Processing Based on Electromagnetically-Induced Transparency Effect in Pr3+:Y2SiO5 Crystal" Applied Sciences 8, no. 7: 1179. https://doi.org/10.3390/app8071179
APA StyleLiu, J., Li, Z., Fan, H., & Zhang, G. (2018). Coherent Optical Field Manipulation and Optical Information Processing Based on Electromagnetically-Induced Transparency Effect in Pr3+:Y2SiO5 Crystal. Applied Sciences, 8(7), 1179. https://doi.org/10.3390/app8071179