Similarity Estimation for Large-Scale Human Action Video Data on Spark
Abstract
:1. Introduction
2. Related Work
3. Proposed Framework
3.1. Preprocessing
3.2. Feature Extraction
3.2.1. Local Binary Pattern (LBP)
3.2.2. Sobel Operator for Edge Detection
3.2.3. Edge Based Local Pattern Descriptor
3.3. Similarity Measure
Algorithm 1: Feature Extraction |
Input: RDD [VideoName N , VideoData D] Output: RDD [VideoName N , FeatureVector V] for all (N,D) ∈ RDD[N,D] parallel do /*flatMap stage*/ BI ← BackgroundImage for i=1 to NumberofFrame a ← D[i] Ba ← apply BackgroundSubtraction(a,BI) V[i] ← apply ELP(Ba) end for add (N,V to result RDD) end for |
4. Experiments and Evaluation
4.1. Experiment Setup
4.2. Datasets
4.3. Experimental Results and Analysis
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Wang, C.; Zhang, J.; Xu, J. Human activity recognition based on similarity. In Proceedings of the IEEE 17th International Conference on Computational Science and Engineering (CSE), Chengdu, China, 19–21 December 2014; pp. 1382–1387. [Google Scholar]
- Lee, S.Y.; Sim, J.Y.; Kim, C.S.; Lee, S.U. Correspondence matching of multi-view video sequences using mutual information based similarity measure. IEEE Trans. Multimedia 2013, 15, 1719–1731. [Google Scholar] [CrossRef]
- Lehmann, A.; Bouthemy, P.; Yao, J.F. Rank-test similarity measure between video segments for local descriptors. In International Workshop on Adaptive Multimedia Retrieval; Springer: Berlin/Heidelberg, Germany, 2006; pp. 71–81. [Google Scholar]
- Black Bean. Let’s Dance with Mel B. Available online: https://www.playstation.com/en-gb/games/lets-dance-with-mel-b-ps3/ (accessed on 19 April 2018).
- Ubisoft. Just Dance. 2011. Available online: http://just-dancethegame.ubi.com/jd-portal/en-gb/home/index.aspx (accessed on 19 April 2018).
- Han, M.; Bang, J.H.; Nugent, C.; McClean, S.; Lee, S. A lightweight hierarchical activity recognition framework using smartphone sensors. Sensors 2014, 14, 16181–16195. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yang, J.; Liu, Z.; Lane, N.D.; Choudhury, T.; Campbell, A.T. The jigsaw continuous sensing engine for mobile phone applications. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, Zurich, Switzerland, 3–5 November 2010; pp. 71–84. [Google Scholar]
- Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10), Boston, MA, USA, 22–25 June 2010. [Google Scholar]
- Uddin, M.A.; Joolee, J.B.; Alam, A.; Lee, Y.K. Human Action Recognition Using Adaptive Local Motion Descriptor in Spark. IEEE Access 2017, 5, 21157–21167. [Google Scholar] [CrossRef]
- Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.B.; Amde, M.; Owen, S.; et al. MLlib: Machine learning in apache spark. J. Mach. Learn. Res. 2016, 17, 1235–1241. [Google Scholar]
- Wang, H.; Zheng, X.; Xiao, B. Large-scale human action recognition with Spark. In Proceedings of the IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), Xiamen, China, 19–21 October 2015; pp. 1–6. [Google Scholar]
- Lv, J.; Wu, B.; Yang, S.; Jia, B.; Qiu, P. Efficient large scale near-duplicate video detection base on spark. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 957–962. [Google Scholar]
- Liu, X.; Zhao, D.; Xu, L.; Zhang, W.; Yin, J.; Chen, X. A distributed video management cloud platform using hadoop. IEEE Access 2015, 3, 2637–2643. [Google Scholar] [CrossRef]
- J2EE. Available online: http://www.oracle.com/technetwork/java/javaee/appmodel-135059.html (accessed on 19 April 2018).
- Feng, X. Facial expression recognition based on local binary patterns and coarse-to-fine classification. In Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04), Wuhan, China, 16 September 2004; pp. 178–183. [Google Scholar]
- Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Stoica, I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA, USA, 25–27 April 2012. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Tan, X.; Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar] [PubMed]
- Soomro, K.; Zamir, A.R. Action Recognition in Realistic Sports Videos. In Computer Vision in Sports; Springer International Publishing: Cham, Switerland, 2014. [Google Scholar]
- Hafiane, A.; Seetharaman, G.; Zavidovique, B. Median binary pattern for textures classification. In Proceedings of the International Conference Image Analysis and Recognition, Montreal, QC, Canada, 22–24 August 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 387–398. [Google Scholar]
- Bashar, F.; Khan, A.; Ahmed, F.; Kabir, M.H. Robust facial expression recognition based on median ternary pattern (MTP). In Proceedings of the International Conference on Electrical Information and Communication, Khulna, Bangladesh, 13–15 February 2014; pp. 1–5. [Google Scholar]
- Uddin, M.Z.; Lee, J.J.; Kim, T.S. Shape-based human activity recognition using independent component analysis and hidden markov model. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Wrocław, Poland, 18–20 June 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 245–254. [Google Scholar]
- Jabid, T.; Chae, O.S. Local Transitional Pattern: A Robust Facial Image Descriptor for Automatic Facial Expression Recognition. In Proceedings of the International Conference on Computer Convergence Technology, Seoul, Korea, 29 November–1 December 2011; pp. 333–344. [Google Scholar]
- Abdesselam, A. Improving local binary patterns techniques by using edge information. Lect. Notes Softw. Eng. 2013, 1, 360. [Google Scholar] [CrossRef]
- Ahmed, F.; Hossain, E. Automated facial expression recognition using gradient-based ternary texture patterns. Chin. J. Eng. 2013, 2013, 831747. [Google Scholar] [CrossRef]
- Satpathy, A.; Jiang, X.; Eng, H.L. LBP-based edge-texture features for object recognition. IEEE Trans. Image Process. 2014, 23, 1953–1964. [Google Scholar] [CrossRef] [PubMed]
- Boudissa, A.; Tan, J.K.; Kim, H.; Shinomiya, T.; Ishikawa, S. A novel pedestrian detector on low-resolution images: Gradient LBP using patterns of oriented edges. IEICE Trans. Inf. Syst. 2013, 96, 2882–2887. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L. Feature Fusion of Gradient Direction and LBP for Facial Expression Recognition. In Proceedings of the Chinese Conference on Biometric Recognition, Tianjin, China, 13–15 November 2015; Springer: Cham, Switzerland, 2015; pp. 423–430. [Google Scholar]
- Rodriguez, M.D.; Ahmed, J.; Shah, M. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Zhang, W.; Xu, L.; Duan, P.; Gong, W.; Lu, Q.; Yang, S. A video cloud platform combing online and offline cloud computing technologies. Pers. Ubiquitous Comput. 2015, 19, 1099–1110. [Google Scholar] [CrossRef]
- Kim, M.; Cui, Y.; Han, S.; Lee, H. Towards efficient design and implementation of a hadoop-based distributed video transcoding system in cloud computing environment. Int. J. Multimedia Ubiquitous Eng. 2013, 8, 213–224. [Google Scholar]
- Tan, H.; Chen, L. An approach for fast and parallel video processing on Apache Hadoop clusters. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, 14–18 July 2014; pp. 1–6. [Google Scholar]
# of Frames | Neighbor Frames | Computation Time (Seconds) |
---|---|---|
136 | 3 | 94.3782 |
136 | 4 | 108.8361 |
136 | 5 | 129.1928 |
272 | 3 | 170.9647 |
272 | 4 | 194.7050 |
272 | 5 | 232.8930 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Uddin, M.A.; Dolgorsuren, B.; Akhond, M.R.; Khan, K.U.; Hossain, M.I.; Lee, Y.-K. Similarity Estimation for Large-Scale Human Action Video Data on Spark. Appl. Sci. 2018, 8, 778. https://doi.org/10.3390/app8050778
Xu W, Uddin MA, Dolgorsuren B, Akhond MR, Khan KU, Hossain MI, Lee Y-K. Similarity Estimation for Large-Scale Human Action Video Data on Spark. Applied Sciences. 2018; 8(5):778. https://doi.org/10.3390/app8050778
Chicago/Turabian StyleXu, Weihua, Md Azher Uddin, Batjargal Dolgorsuren, Mostafijur Rahman Akhond, Kifayat Ullah Khan, Md Ibrahim Hossain, and Young-Koo Lee. 2018. "Similarity Estimation for Large-Scale Human Action Video Data on Spark" Applied Sciences 8, no. 5: 778. https://doi.org/10.3390/app8050778
APA StyleXu, W., Uddin, M. A., Dolgorsuren, B., Akhond, M. R., Khan, K. U., Hossain, M. I., & Lee, Y.-K. (2018). Similarity Estimation for Large-Scale Human Action Video Data on Spark. Applied Sciences, 8(5), 778. https://doi.org/10.3390/app8050778