Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Substrate Temperature Effects
3.2. Substrate Stage Rotation Rate Effects
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Paroli, P. Magneto-optical devices based on garnet films. Thin Solid Films 1984, 114, 187–219. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials; Institute of Physics Publishing: Bristol, UK, 1997. [Google Scholar]
- Scott, G.B.; Lacklison, D.E. Magnetooptic properties and applications of Bismuth substituted iron garnets. IEEE Trans. Magn. 1976, 12, 292–311. [Google Scholar] [CrossRef]
- Kahl, S.; Grishin, A.M.; Kharstev, S.I.; Kawano, K.; Abell, J.S. Bi3Fe5O12 thin film visualizer. IEEE Trans. Mag. 2001, 37, 2457–2459. [Google Scholar] [CrossRef]
- Vasiliev, M.; Nur-E-Alam, M.; Kotov, V.A.; Alameh, K.; Belotelov, V.I.; Burkov, V.I.; Zvezdin, A.K. RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region. Opt. Express 2009, 17, 19519–19535. [Google Scholar] [CrossRef] [PubMed]
- Belotelov, V.I.; Kreilkamp, L.E.; Akimov, I.A.; Kalish, A.N.; Bykov, D.A.; Kasture, S.; Yallapragada, V.J.; Gopal, A.V.; Grishin, A.M.; Khartsev, S.I.; et al. Plasmon mediated magneto-optical transparency. Nat. Commun. 2013, 4, 2128. [Google Scholar] [CrossRef] [PubMed]
- Sylgacheva, D.; Khokhlov, N.; Kalish, A.; Dagesyan, S.; Prokopov, A.; Shaposhnikov, A.; Berzhansky, V.; Nur-E-Alam, M.; Vasiliev, M.; Alameh, K.; et al. Transverse magnetic field impact on waveguide modes of photonic crystals. Opt. Lett. 2016, 41, 3813–3816. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, R.; Park, J.R. Magneto-optical modulator for superconducting digital output interface. IEEE Trans. Appl. Supercond. 2001, 11, 727–730. [Google Scholar] [CrossRef]
- Suzuki, T. Magnetic and magneto-optic properties of rapid thermally crystallized garnet films (invited). J. Appl. Phys. 1991, 69, 4756. [Google Scholar] [CrossRef]
- Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties. Mater. Res. Bull. 2012, 47, 1407–1411. [Google Scholar] [CrossRef]
- Adachi, N.; Obata, K.; Okuda, T.; Machi, T.; Koshizuka, N. Synthesis of Bi–Lu-substituted iron garnet films for visualization of magnetic flux in high-Tc superconductors. Jpn. J. Appl. Phys. 2002, 41, 5986–5990. [Google Scholar] [CrossRef]
- Zaezjev, M.; Sekhar, M.C.; Ferrera, M.; Razzari, L.; Ross, G.; Holmes, B.; Sorel, M.; Hutchings, D.; Roorda, S.; Morandotti, R. Magneto-optic iron-garnet thin films for integrated optical applications. SPIE Newsroom 2007. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.H.; Kim, J.S.; Kim, S.I.; Levy, M. Epitaxial growth and properties of Bi-Substituted Yttrium-Iron-garnet films grown on (111) Gadolinium-Gallium-garnet substrates by using rf magnetron sputtering. J. Korean Phys. Soc. 2003, 43, 400–405. [Google Scholar]
- Wee, S.H.; Hong, H.S.; Kim, Y.H.; Yoo, S.I.; Kang, J. Fabrication and characterization of Bi-substituted Yttrium iron garnet films by pulsed laser deposition. Met. Mater. Int. 2003, 9, 507–511. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, S.; Li, F.; Que, D. Preparation of bismuth substituted dysprosium iron garnet film by a sol-gel process. J. Mater. Sci. Mater. Electron. 1998, 9, 347–350. [Google Scholar] [CrossRef]
- Ishibashi, T.; Kosaka, T.; Naganuma, M.; Nomura, T. Magneto-optical properties of Bi-substituted Yttrium iron garnet films by metal-organic decomposition method. J. Phys. Conf. Ser. 2010, 200, 112002. [Google Scholar] [CrossRef]
- Hibiya, T.; Okada, O.; Masumoto, T. Refractive index of Bi-substituted gadolinium iron garnet films grown by liquid-phase epitaxy. J. Appl. Phys. 1985, 58, 510. [Google Scholar] [CrossRef]
- Duan, M.; Grishin, A.M.; Rao, K.V. Laser deposited Bismuth doped iron garnet films with perpendicular anisotropy. IEEE Trans. Magn. 1995, 31, 3245–3246. [Google Scholar] [CrossRef]
- Mino, S.; Matsuoka, M.; Tate, A.; Shibukawa, A.; Ono, K. Completely Bi-Substituted iron garnet (BIG) films prepared by electron cyclotron resonance (ECR) sputtering. J. Appl. Phys. 1992, 31, 1786–1792. [Google Scholar] [CrossRef]
- Kumar, N.; Prasad, S.; Misra, D.S.; Venkataramani, N.; Bohra, M.; Krishnan, R. The influence of substrate temperature and annealing on the properties of pulsed laser-deposited YIG films on fused quartz substrate. J. Magn. Magn. Mater. 2008, 320, 2233–2236. [Google Scholar] [CrossRef]
- Rojas, R.; Krafft, C.; Nistor, I.; Zhang, D.; Mayergoyz, I.D. Growth effects (rotation rate) on the characteristics of Bi-substituted lutetium iron garnets. J. Appl. Phys. 2004, 95, 6885. [Google Scholar] [CrossRef]
- Tehranchi, M.M.; Hamidi, S.M.; Hasanpour, A.; Mozaffari, M.; Amighian, J. The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition. Opt. Laser Technol. 2011, 43, 609–612. [Google Scholar] [CrossRef]
- Nakajima, K.; Machida, K. Thermal expansion of gallium garnets and Bi-substituted iron garnet epitaxial thick films. J. Cryst. Growth. 1988, 92, 23–25. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; Wen, Q.; Liu, Y.J. Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method. Appl. Phys. 2010, 108, 073901. [Google Scholar] [CrossRef]
- Berzhansky, V.N.; Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Mikhailova, T.V.; Kharchenko, N.F.; Lukienko, I.N.; Kharchenko, Y.N.; Miloslavskaya, O.V.; Kotov, V.A.; et al. The effect of Faraday rotation enhancement in nanolayered structures of Bi-substituted iron garnets. Solid State Phenomena 2013, 200, 233–238. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Growth, characterization, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures. Int. J. Mater. Eng. Innov. 2014, 5, 172–181. [Google Scholar] [CrossRef]
- Rabeh, M.B.; Touatti, R.; Kanzari, M. Substrate temperature effects on structural optical and electrical properties of vacuum evaporated Cu2ZnSnS4 thin films. Int. J. Eng. Pract. Res. 2013, 2, 71–76. [Google Scholar]
- Vasiliev, M.; Nur-E-Alam, M.; Perumal, P.; Kotov, V.A.; Alameh, K.; Lee, Y.T.; Lee, Y.P. Annealing behavior and crystal structure of RF-sputtered bi-substituted dysprosium iron garnet films having excess co-sputtered bi-oxide content. J. Phys. D Appl. Phys. 2011, 44, 075002. [Google Scholar] [CrossRef]
- Eschenfelder, A.H. Magnetic Bubble Technology; Springer-Verlag: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Cullity, B.D. Elements of X-ray Diffraction, 2nd ed.; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1978. [Google Scholar]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. High-performance RF-sputtered Bi-substituted iron garnet thin films with almost in-plane magnetization. Opt. Mater. Express 2017, 7, 676–686. [Google Scholar] [CrossRef]
- Thornton, J.A. The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. 1986, 4, 3059–3065. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A 2003, 21, s117–s128. [Google Scholar] [CrossRef]
- Kotov, V.A.; Shavrov, V.G.; Vasiliev, M.; Alameh, K.; Nur-E-Alam, M.; Prasad, S.; Narayanan, V.; Alyab’eva, L.N.; Balabanov, D.E.; Burkov, V.I. Magneto-optic properties of ultrathin bismuth-containing ferrite-garnet films obtained using radio-frequency magnetron sputtering. J. Commun. Technol. Electron. 2014, 59, 1423–1425. [Google Scholar] [CrossRef]
Samples/Parameters | ST1 | ST2 | ST3 | ST4 | |
---|---|---|---|---|---|
Substrate temperature | RT (~22) °C | 150 °C | 300 °C | 600 °C | |
Substrate stage rotation rate (rpm) | 15.5–16 | 15.5–16 | 15.5–16 | 15.5–16 | |
Substrate type | Quartz | Quartz | Quartz | Quartz | |
Argon (Ar) pressure | 2 mTorr | 2 mTorr | 2 mTorr | 2 mTorr | |
RF power densities at target | 3.8 W/cm2 | 3.8 W/cm2 | 3.8 W/cm2 | 3.8 W/cm2 | |
Deposition run time | 62 min | 62 min | 62 min | 62 min | |
Garnet layer thicknesses deposited | 340 nm | 350 nm | 345 nm | 235 nm | |
Annealing process parameters | 670 °C for 1 h | 670 °C for 1 h | 670 °C for 1 h | 670 °C for 1 h | |
Best MO performance measured in 532 nm | Sp. Faraday rotation (deg/µm) | 7.5 | 6.84 | 7.15 | 5.02 |
MO figure of merit (degrees) | 15.2 | 13.23 | 13.21 | 8.7 | |
Coercivity (Hc) (Oe) | ~300 | ~150 | ~100 | ~220 | |
Saturation magnetization (Hsat) (Oe) | ~500 | ~300 | ~500 | ~480 | |
Average crystallite size (nm) | 33.23 | 36.30 | 35.95 | 30.01 |
Samples/Parameters | SS1 | SS2 | SS3 | |
---|---|---|---|---|
Substrate stage rotation rate (rpm) | 7.5–8 | 15.5–16 | 25.5–26 | |
Substrate temperature | RT | RT | RT | |
Process gas (Ar) pressure | 2 mTorr | 2 mTorr | 2 mTorr | |
RF power densities at target | 3.8 W/cm2 | 3.8 W/cm2 | 3.8 W/cm2 | |
Deposition run time | 62 min | 62 min | 62 min | |
Deposited layer thickness | 364 nm | 376 nm | 352 nm | |
Annealing process parameters | 6 h at 580 °C or 1 h at 670 °C | 6 h at 580 °C or 1 h at 670 °C | 6 h at 580 °C or 1 h at 670 °C | |
MO parameters measured at 532 nm | Specific Faraday rotation (deg/µm) | 6.03 | 6.36 | 6.27 |
Figure of merit (degrees) | 11.9 | 15.1 | 11.2 | |
Coercivity (Hc) (Oe) | ~130 | ~130 | ~160 | |
Saturation magnetization (Hsat) (Oe) | ~230 | ~250 | ~300 | |
Average crystallite size (nm) | 36.6 nm | 36.8 nm | 31.3 nm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films. Appl. Sci. 2018, 8, 456. https://doi.org/10.3390/app8030456
Nur-E-Alam M, Vasiliev M, Alameh K. Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films. Applied Sciences. 2018; 8(3):456. https://doi.org/10.3390/app8030456
Chicago/Turabian StyleNur-E-Alam, M., Mikhail Vasiliev, and Kamal Alameh. 2018. "Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films" Applied Sciences 8, no. 3: 456. https://doi.org/10.3390/app8030456
APA StyleNur-E-Alam, M., Vasiliev, M., & Alameh, K. (2018). Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films. Applied Sciences, 8(3), 456. https://doi.org/10.3390/app8030456