Composite Properties and Micromechanical Analysis of Highly Ductile Cement Composite Incorporating Limestone Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mixture Proportions
2.2. Specimen Preparation
2.3. Compressive Strength and Uniaxial Tension Tests
2.4. Fiber Pullout Test and Matrix Fracture Test
3. Results and Discussion
3.1. Compressive Strength and Uniaxial Tensile Behavior
3.2. Interfacial Properties between the Fiber and the Matrix
3.3. Matrix Fracture Toughness
4. Micromechanical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Foti, D. Innovative techniques for concrete reinforcement with polymers. Constr. Build. Mater. 2016, 112, 202–209. [Google Scholar] [CrossRef]
- Foti, D.; Paparella, F. Impact behavior of structural elements in concrete reinforced with pet grids. Mech. Res. Commun. 2014, 57, 57–66. [Google Scholar] [CrossRef]
- Sutherland, R.; Humm, D.; Chrimes, M. Historic Concrete: Background to Appraisal; Thomas Telford: London, UK, 2001. [Google Scholar]
- Li, V.C. On engineered cementitious composites (ecc). J. Adv. Concr. Technol. 2003, 1, 215–230. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, J.-S.; Ha, G.J.; Kim, Y.Y. Tensile and fiber dispersion performance of ecc (engineered cementitious composites) produced with ground granulated blast furnace slag. Cem. Concr. Res. 2007, 37, 1096–1105. [Google Scholar] [CrossRef]
- Choi, J.-I.; Lee, B. Bonding properties of basalt fiber and strength reduction according to fiber orientation. Materials 2015, 8, 6719–6727. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Choi, J.-I.; Kim, H.-K.; Lee, B.Y. Effects of a defoamer on the compressive strength and tensile behavior of alkali-activated slag-based cementless composite reinforced by polyethylene fiber. Compos. Struct. 2017, 172, 166–172. [Google Scholar] [CrossRef]
- Li, V.C.; Wang, Y.; Backer, S. A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. J. Mech. Phys. Solids 1991, 39, 607–625. [Google Scholar] [CrossRef]
- Marshall, D.; Cox, B. A j-integral method for calculating steady-state matrix cracking stresses in composites. Mech. Mater. 1988, 7, 127–133. [Google Scholar] [CrossRef]
- Damtoft, J.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- De Weerdt, K.; Kjellsen, K.; Sellevold, E.; Justnes, H. Synergy between fly ash and limestone powder in ternary cements. Cem. Concr. Compos. 2011, 33, 30–38. [Google Scholar] [CrossRef]
- Heikal, M.; El-Didamony, H.; Morsy, M. Limestone-filled pozzolanic cement. Cem. Concr. Res. 2000, 30, 1827–1834. [Google Scholar] [CrossRef]
- Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of portland cements. Cem. Concr. Compos. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Ghiasvand, E.; Nickseresht, I.; Mahdikhani, M.; Moodi, F. Influence of various amounts of limestone powder on performance of portland limestone cement concretes. Cem. Concr. Compos. 2009, 31, 715–720. [Google Scholar] [CrossRef]
- Tsivilis, S.; Tsantilas, J.; Kakali, G.; Chaniotakis, E.; Sakellariou, A. The permeability of portland limestone cement concrete. Cem. Concr. Res. 2003, 33, 1465–1471. [Google Scholar] [CrossRef]
- Voglis, N.; Kakali, G.; Chaniotakis, E.; Tsivilis, S. Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cem. Concr. Compos. 2005, 27, 191–196. [Google Scholar] [CrossRef]
- Felekoglu, B. Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resour. Conserv. Recycl. 2007, 51, 770–791. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, S.; Beltran, M.G.S.; Ye, G.; van Breugel, K.; Li, V.C. Development of engineered cementitious composites with limestone powder and blast furnace slag. Mater. Struct. 2010, 43, 803–814. [Google Scholar] [CrossRef]
- JSCE (Japan Society of Civil Engineers). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC); Japan Society of Civil Engineers: Tokyo, Japan, 2008. [Google Scholar]
- ASTM International. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. In Annual Book of ASTM Standards; ASTM C39/C39M-15; American society for Testing and Materials: West Conshohocken, PA, USA, 2015. [Google Scholar] [CrossRef]
- Redon, C.; Li, V.C.; Wu, C.; Hoshiro, H.; Saito, T.; Ogawa, A. Measuring and modifying interface properties of pva fibers in ecc matrix. J. Mater. Civ. Eng. 2001, 13, 399–406. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. In Annual Book of ASTM standards; ASTM E399; American Society for Testing and Materials: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Kanda, T.; Li, V.C. Effect of fiber strength and fiber-matrix interface on crack bridging in cement composites. J. Eng. Mech. 1999, 125, 290–299. [Google Scholar] [CrossRef]
- Kanda, T.; Li, V.C. Practical design criteria for saturated pseudo strain hardening behavior in ecc. J. Adv. Concr. Technol. 2006, 4, 59–72. [Google Scholar] [CrossRef]
- Rizzuti, L.; Bencardino, F. Effects of fibre volume fraction on the compressive and flexural experimental behaviour of sfrc. Cont. Eng. Sci. 2014, 7, 379–390. [Google Scholar] [CrossRef]
- Lee, B.Y.; Lee, Y.; Kim, J.K.; Kim, Y.Y. Micromechanics-based fiber-bridging analysis of strain-hardening cementitious composite accounting for fiber distribution. CMES-Comp. Model. Eng. Sci. 2010, 61, 111–132. [Google Scholar]
- Yang, E.-H.; Wang, S.; Yang, Y.; Li, V.C. Fiber-bridging constitutive law of engineered cementitious composites. J. Adv. Concr. Technol. 2008, 6, 181–193. [Google Scholar] [CrossRef]
Fiber | Density (g/mm3) | Length (mm) | Diameter (μm) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation (%) |
---|---|---|---|---|---|---|
PVA | 1.30 | 12 | 40 | 1560 | 41 | 6.5 |
Mix | Water | Cement | Limestone Powder | Sand | Admixtures | PVA Fiber (by vol.) | ||
---|---|---|---|---|---|---|---|---|
SP | VMA | Deformer | ||||||
HDCC0 | 0.45 | 1 | 0 | 0.80 | 0.0031 | 0.0020 | 0.0020 | 2 |
HDCC15 | 0.45 | 0.85 | 0.15 | 0.80 | 0.0026 | 0.0026 | 0.0020 | 2 |
HDCC30 | 0.45 | 0.70 | 0.30 | 0.80 | 0.0025 | 0.0030 | 0.0020 | 2 |
HDCC45 | 0.45 | 0.55 | 0.45 | 0.80 | 0.0023 | 0.0035 | 0.0020 | 2 |
Mixture | Initial Cracking Strength (MPa) | Tensile Strength (MPa) | Tensile Strain Capacity (%) | Stress Performance Index |
---|---|---|---|---|
HDCC0 | 4.0 ± 0.22 | 5.1 ± 0.17 | 2.6 ± 0.13 | 1.28 |
HDCC15 | 3.7 ± 0.17 | 4.8 ± 0.21 | 3.1 ± 0.16 | 1.30 |
HDCC30 | 3.2 ± 0.18 | 4.3 ± 0.22 | 3.7 ± 0.09 | 1.34 |
HDCC45 | 2.6 ± 0.13 | 3.5 ± 0.16 | 4.2 ± 0.13 | 1.35 |
Mixture | Gd (MPa) | τ0 (J/m2) |
---|---|---|
HDCC0 | 1.874 ± 0.05 | 0.854 ± 0.02 |
HDCC15 | 1.863 ± 0.04 | 0.744 ± 0.01 |
HDCC30 | 1.877 ± 0.06 | 0.621 ± 0.04 |
HDCC45 | 1.869 ± 0.04 | 0.526 ± 0.05 |
Mixture | Km (MPa·m1/2) | Jtip (J/m2) |
---|---|---|
HDCC0 | 1.065 ± 0.06 | 8.2 ± 0.15 |
HDCC15 | 0.821 ± 0.03 | 6.0 ± 0.21` |
HDCC30 | 0.679 ± 0.04 | 4.1 ± 0.17 |
HDCC45 | 0.552 ± 0.03 | 2.6 ± 0.24 |
Mixture | (J/m2) | RE (/) |
---|---|---|
HDCC0 | 39.1 | 4.8 |
HDCC15 | 43.1 | 7.2 |
HDCC30 | 45.4 | 10.9 |
HDCC45 | 47.6 | 17.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, J.H.; Lee, B.Y.; Kim, Y.Y. Composite Properties and Micromechanical Analysis of Highly Ductile Cement Composite Incorporating Limestone Powder. Appl. Sci. 2018, 8, 151. https://doi.org/10.3390/app8020151
Hyun JH, Lee BY, Kim YY. Composite Properties and Micromechanical Analysis of Highly Ductile Cement Composite Incorporating Limestone Powder. Applied Sciences. 2018; 8(2):151. https://doi.org/10.3390/app8020151
Chicago/Turabian StyleHyun, Jung Hwan, Bang Yeon Lee, and Yun Yong Kim. 2018. "Composite Properties and Micromechanical Analysis of Highly Ductile Cement Composite Incorporating Limestone Powder" Applied Sciences 8, no. 2: 151. https://doi.org/10.3390/app8020151
APA StyleHyun, J. H., Lee, B. Y., & Kim, Y. Y. (2018). Composite Properties and Micromechanical Analysis of Highly Ductile Cement Composite Incorporating Limestone Powder. Applied Sciences, 8(2), 151. https://doi.org/10.3390/app8020151