Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine
Abstract
:1. Introduction
2. Methodology
2.1. Test Fuels
2.2. Experimental Setup and Measurements
2.2.1. Engine Setup
2.2.2. Experimental Equipment
2.2.3. Test Procedure
2.2.4. Data Analysis
3. Results
3.1. Engine Performance
3.1.1. Combustion Characteristics
3.1.2. Fuel Consumption
3.1.3. Idle Stability
3.2. Emission Characteristics
3.2.1. Pollutant Emissions
3.2.2. Particulate Matter Characteristics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Palm Oil Biodiesel |
CRDI | Common-Rail Direct-Injection |
BTDC | Before Top Dead Center |
°CA | Crank Angle |
NOx | Nitric Oxide |
PM | Particulate Matter |
CO | Carbon Monoxide |
HC | Hydrocarbon |
VOC | Volatile Organic Compound |
GTL | Gas-To-Liquid |
PD0 | 0% Palm Oil Biodiesel + 100% Diesel |
PD10 | 10% Palm Oil Biodiesel + 90% Diesel |
PD20 | 20% Palm Oil Biodiesel + 80% Diesel |
PD30 | 30% Palm Oil Biodiesel + 70% Diesel |
PD100 | 100% Palm Oil Biodiesel + 0% Diesel |
COV | Coefficient of Variation |
IMEP | Indicated Mean Effective Pressure |
dQ/dθ | Heat Release Rate |
k | Specific heat ratio |
P | Combustion pressure |
θ | Crank angle |
V | Cylinder volume |
Vd | Displacement volume |
r | Compression ratio |
R | Stroke-to-Bore ratio |
SFC | Specific Fuel Consumption |
ISFC | Indicated Specific Fuel Consumption |
BSFC | Brake Specific Fuel Consumption |
Fuel flow rate | |
N | Engine Speed |
T | Engine Torque |
TDC | Top Dead Center |
References
- US Energy Information Administration (EIA). Monthly Energy Review September 2018; DOE/EIA-0035(2018/9); EIA: Washington, DC, USA, 2018; p. 35.
- US Energy Information Administration (EIA). Annual Energy Outlook 2018 with Projections to 2050; #AEO2018 (6 February 2018); EIA: Washington, DC, USA, 2018; pp. 106–112.
- Campbell, C.J.; Laherrère, J.H. The End of Cheap Oil. Sci. Am. 1998, 278, 77–83. [Google Scholar] [CrossRef]
- Worldwide Emission Standards and Related Regulations. Available online: https://www.continental-automotive.com/getattachment/.../Emission_Booklet_2017.pdf (accessed on 6 October 2018).
- Worldwide Emissions Standards Passenger Cars and Light Duty. Available online: https://www.delphi.com/sites/default/files/inline-files/delphi-worldwide-emissions-standards-passenger-cars-light-duty-2016-7.pdf (accessed on 6 October 2018).
- EU: Cars and Light Trucks, Emission Standards, DieselNet. Available online: https://www.dieselnet.com/standards/eu/ld.php (accessed on 6 October 2018).
- Ella Zhou, Presentation at CNREC, U.S. Renewable Energy Policy and Industry. Available online: https://www.nrel.gov/docs/fy16osti/65255.pdf (accessed on 6 October 2018).
- Cárdenas, O.; Armas, O.; Mata, C.; Soto, F. Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel 2016, 185, 743–762. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Hagos, F.Y.; Mamat, R.; Abdul Adam, A.; Ishak, W.F.W.; Alenezi, R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—A review. Renew. Sustain. Energy Rev. 2017, 72, 497–509. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Kim, M.S.; Choi, N.J. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine. Appl. Sci. 2017, 7, 34. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Choi, N.J. Using Canola Oil Biodiesel as an Alternative Fuel in Diesel Engines: A Review. Appl. Sci. 2017, 7, 881. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H.; Oz, C. Progress in Bioethanol Processing. Prog. Energy Combust. Sci. 2008, 34, 551–573. [Google Scholar] [CrossRef]
- Lim, Y.K.; Shin, S.C.; Kin, J.R.; Yim, E.S.; Song, H.O.; Kin, D. Characteristic Analysis of GTL fuel as an Automobile Diesel. Korean Soc. Ind. Eng. Chem. 2008, 6, 617–623. [Google Scholar]
- Lapuerta, M.; Armas, O.; Rodríguez-Fernández, J. Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. Sci. 2008, 34, 198–223. [Google Scholar] [CrossRef]
- Bajpai, D.; Tyagi, V.K. Biodiesel: Source, Production, Composition, Properties and Its Benefits. J. Oleo Sci. 2006, 55, 487–502. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Chauhan, S.R. Performance and emission characteristics of biodiesel from different origins: A review. Renew. Sustain. Energy Rev. 2013, 21, 633–658. [Google Scholar] [CrossRef]
- Basha, S.A.; Gopal, K.R.; Jebaraj, S. A review on biodiesel production, combustion, emissions and performance. Renew. Sustain. Energy Rev. 2009, 13, 1628–1634. [Google Scholar] [CrossRef]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Ge, J.C.; Kim, M.S.; Yoon, S.K.; Choi, N.J. Effects of pilot injection timing and egr on combustion, performance and exhaust emissions in a common rail diesel engine fueled with a canola oil biodiesel-diesel blend. Energies 2015, 8, 7312–7325. [Google Scholar] [CrossRef]
- Yoon, S.K.; Kim, M.S.; Kim, H.J.; Choi, N.J. Effects of canola oil biodiesel fuel blends on combustion, performance, and emissions reduction in a common rail diesel engine. Energies 2014, 7, 8132–8149. [Google Scholar] [CrossRef]
- Ge, J.C.; Kim, H.Y.; Yoon, S.K.; Choi, N.J. Reducing volatile organic compound emissions from diesel engines using canola oil biodiesel fuel and blends. Fuel 2018, 218, 266–274. [Google Scholar] [CrossRef]
- Karavalakis, G.; Stoumas, S.; Bakeas, E. Light vehicle regulated and unregulated emissions from different biodiesels. Sci. Total Environ. 2009, 407, 3338–3346. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Z. Study on status characteristics and oxidation reactivity of biodiesel particulate matter. Fuel 2018, 218, 218–226. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.L.; Lee, C.F. Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending: A review. Renew. Sustain. Energy Rev. 2016, 64, 569–581. [Google Scholar] [CrossRef]
- Zahan, K.A.; Kano, M. Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies 2018, 11, 2132. [Google Scholar] [CrossRef]
- Yusop, A.F.; Mamat, R.; Yusaf, F.; Najafi, G.; Yasin, M.H.M.; Khathri, A.M. Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel. Energies 2018, 11, 1039. [Google Scholar] [CrossRef]
- Idle Speed. Available online: https://en.wikipedia.org/wiki/Idle_speed (accessed on 7 November 2018).
- Shim, M.K.; Rim, J.M.; Lee, B.H.; Hong, S.T.; Lee, D.Y. A Methodology on Analyzing Fuel Saving with Idling Stop. Trans. Korean Soc. Autom. Eng. 2009, 17, 120–126. [Google Scholar]
- Ashrafur Rahman, S.M.; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H. Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles—A review. Energy Convers. Manag. 2013, 74, 171–182. [Google Scholar] [CrossRef]
- Ashrafur Rahman, S.M.; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A. Assessing idling effects on a compression ignition engine fueled with Jatropha and Palm biodiesel blends. Renew. Energy 2014, 68, 644–650. [Google Scholar] [CrossRef]
- Ashrafur Rahman, S.M.; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Imtenan, S. Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends. J. Clean. Prod. 2014, 69, 208–215. [Google Scholar] [CrossRef]
- Roy, M.M.; Wang, W.; Bujold, J. Biodiesel production and comparison of emissions of DI diesel engine fueled by biodiesel-diesel and canola oil-diesel blends at high idling operations. Appl. Energy 2013, 106, 198–208. [Google Scholar] [CrossRef]
- El-Araby, R.; Amin, A.; El Morsi, A.K.; El-Ibiari, N.N.; El-Diwani, G.I. Study on the characeristics of palm oil-biodiesel-diesel fuel blend. Egypt. J. Pet. 2018, 27, 187–194. [Google Scholar] [CrossRef]
- Salamanca, M.; Mondragón, F.; Agudelo, J.R.; Santamaría, A. Influence of palm oil biodiesel on the chemical and morphological characteristics of particulate matter emitted by a diesel engine. Atmos. Environ. 2012, 62, 220–227. [Google Scholar] [CrossRef]
- Lim, Y.K.; Jeon, C.H.; Kim, S.; Yim, E.S.; Song, H.O.; Shin, S.C.; Kim, D.K. Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils. Korean Chem. Eng. Res. 2009, 47, 237–242. [Google Scholar]
- Where the Energy Goes: Gasoline Vehicles. Available online: https://fueleconomy.gov/feg/atv.shtml (accessed on 8 October 2018).
- Park, S.H.; Kim, H.J.; Kim, S.H.; Lee, C.S. Spray-atomization Characteristics of Biodiesel Fuel with Multiple Injection. Korean Soc. Autom. Eng. 2010, 18, 40–47. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw Hill: New York, NY, USA, 1988. [Google Scholar]
- Lee, C.S.; Park, S.W.; Kwon, S.I. An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-Blend Fuels. Energy Fuels 2005, 19, 2201–2208. [Google Scholar] [CrossRef]
- Tziourtzioumis, D.N.; Stamatelos, A.M.; Stamatelos, A. Experimental investigation of the effect of biodiesel blends on a DI diesel engine’s injection and combustion. Energies 2017, 10, 970. [Google Scholar] [CrossRef]
Properties | Diesel | Palm Oil Biodiesel | Test Method |
---|---|---|---|
Density at 15 °C (kg/m3) | 836.8 | 877 | ASTM D941 |
Viscosity at 40 °C (mm2/s) | 2.719 | 4.56 | ASTM D445 |
Lower calorific value (MJ/kg) | 43.96 | 39.72 | ASTM D4809 |
Calculated cetane index | 55.8 | 57.3 | ASTM D4737 |
Flash point (°C) | 55 | 196.0 | ASTM D93 |
Pour point (°C) | −21 | 12.0 | ASTM D97 |
Oxidation stability (h/110 °C) | 25 | 9.24 | EN 14112 |
Ester content (%) | - | 96.5 Min | EN 14103 |
Oxygen content (wt.%) | 0 | 11.26 | - |
Sulfur content (wt.%) | 0.11 | 0.004 | ASTM D5453 |
Hydrogen content (wt.%) | 13.06 | 12.35 | ASTM D5453 |
Carbon content (wt.%) | 85.73 | 79.03 | ASTM D5291 |
Engine Parameters | Unit | Specification |
---|---|---|
Engine Type | - | In-line 4 Cylinder, Turbocharged, EGR |
Maximum Power | kW/rpm | 83.5/4000 |
Maximum Torque | Nm/rpm | 255/2000 |
Bore × Stroke | mm × mm | 83 × 92 |
Displacement | cc | 1991 |
Compression Ratio | - | 17.7:1 |
Number of Injector nozzle holes | - | 5 |
Injector type | - | Solenoid |
Injector hole diameter | mm | 0.17 |
Test Parameters | Unit | Condition |
---|---|---|
Engine Speed | rpm | 750 ± 10 (Idle Speed) |
Engine Load | Nm | 0 and 40 1 |
Cooling Water Temperature | °C | 85 ± 5 |
Intake Air Temperature | °C | 25 ± 5 |
Fuel Injection Pressure | bar | 280 |
Injection Timing | °CA | Main BTDC 2/Pilot BTDC 15 and 20 |
EGR rate | - | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.Y.; Ge, J.C.; Choi, N.J. Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine. Appl. Sci. 2018, 8, 2665. https://doi.org/10.3390/app8122665
Kim HY, Ge JC, Choi NJ. Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine. Applied Sciences. 2018; 8(12):2665. https://doi.org/10.3390/app8122665
Chicago/Turabian StyleKim, Ho Young, Jun Cong Ge, and Nag Jung Choi. 2018. "Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine" Applied Sciences 8, no. 12: 2665. https://doi.org/10.3390/app8122665
APA StyleKim, H. Y., Ge, J. C., & Choi, N. J. (2018). Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine. Applied Sciences, 8(12), 2665. https://doi.org/10.3390/app8122665