Improvement of the Impact Properties of Composite Laminates by Means of Nano-Modification of the Matrix—A Review
Abstract
:1. Introduction
2. Composite Laminates Toughened by Polymeric Nanofibers
3. Composite Laminates Toughened by Nano-Particles
3.1. Zero-Dimensional (0D)
3.2. One-Dimensional (1D)
3.3. Two-Dimensional (2D)
3.4. Three-Dimensional (3D)
4. Suggested Research Directions
- 1.
- Studying the influence of nanofiber interleaving in high-velocity impact response of laminated composites.
- 2.
- 3.
- The effect of geometrical features of nanofibers and nanofibrous mats, such as nanofiber orientation, on the impact response of nano-modified laminates should be investigated.
- 4.
- To achieve practical applications of nanoparticle reinforced composites, a number of technical issues need to be solved, including the uniformity of the dispersion and the alignment of the nanoparticles, to avoid morphological changes like re-agglomeration [143], the optimal interface between nanoparticles and matrix, and the viscosity of nanoparticle-modified matrix resins for ease of fabrication of high fiber volume fraction (>60 vol %) composites.
5. Conclusions
- Electrospun nanofibers are suitable choices for toughening thermoset based laminates. Various types of polymers have been applied for interleaving composite laminates including NY6,66,69, PVDF, PCL, Carbon.
- Each nanofiber type has its specific mechanism for toughening laminates; for instance, NY activates bridging mechanism while PCL utilizes two different mechanisms depend on curing temperature. If PCL melts during the curing process, the phase separation mechanism predominant; if not, the bridging between the composite layers is the main mechanism of toughening.
- According to the published results, Carbon, NY66, and non-melted PCL are the best choices for toughening the laminates.
- A positive effect of nanoparticles to enhance interlaminar fracture toughness, impact performance and CAI strength of composite laminates is reported, especially for brittle resin systems.
- There is a higher improvement in interlaminar shear values (GIC and GIIC) compared with the impact and CAI behavior. On the other hand, some authors reported a negative effect of the nanoparticles on impact and CAI, which was mainly related to insufficient solvent of the nanoparticles in the resin that led to agglomeration of the nanoparticles.
- Manufacturing methods, reinforcement content and type, material property and many other parameters are affecting the performance of nanoparticle modified composites. Therefore, careful consideration must be done when choosing these parameters to target desired properties.
Funding
Conflicts of Interest
References
- Saghafi, H.; Brugo, T.; Minak, G.; Zucchelli, A. The Effect of Pre-stress on Impact Response of Concave and Convex Composite Laminates. Procedia Eng. 2014, 88, 109–116. [Google Scholar] [CrossRef]
- Cantwell, W.J.; Morton, J. The impact resistance of composite materials—A review. Composites 1991, 22, 347–362. [Google Scholar] [CrossRef]
- Newaz, G.; Sierakowski, R.L. Damage Tolerance in Advanced Composites; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Francesconi, L.; Aymerich, F. Effect of Z-pinning on the impact resistance of composite laminates with different layups. Compos. Part A Appl. Sci. Manuf. 2018, 114, 136–148. [Google Scholar] [CrossRef]
- Liu, L.; Wang, P.; Legrand, X.; Soulat, D. Investigation of mechanical properties of tufted composites: Influence of tuft length through the thickness reinforcement. Compos. Struct. 2017, 172, 221–228. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Chavan, V.V.; Ahmad, S.; Alagirusamy, R.; Bhatnagar, N. Low velocity impact response of 2D and 3D Kevlar/polypropylene composites. Int. J. Impact Eng. 2016, 93, 136–143. [Google Scholar] [CrossRef]
- Ravandi, M.; Teo, W.S.; Tran, L.Q.N.; Yong, M.S.; Tay, T.E. Low velocity impact performance of stitched flax/epoxy composite laminates. Compos. Part B Eng. 2017, 117, 89–100. [Google Scholar] [CrossRef]
- Ahmadloo, E.; Gharehaghaji, A.A.; Latifi, M.; Mohammadi, N.; Saghafi, H. How fracture toughness of epoxy-based nanocomposite is affected by PA66 electrospun nanofiber yarn. Eng. Fract. Mech. 2017, 182, 62–73. [Google Scholar] [CrossRef]
- Ahmadloo, E.; Gharehaghaji, A.A.; Latifi, M.; Saghafi, H.; Mohammadi, N. Effect of PA66 nanofiber yarn on tensile fracture toughness of reinforced epoxy nanocomposite. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018. [Google Scholar] [CrossRef]
- Yudhanto, A.; Watanabe, N.; Iwahori, Y.; Hoshi, H. Compression properties and damage mechanisms of stitched carbon/epoxy composites. Compos. Sci. Technol. 2013, 86, 52–60. [Google Scholar] [CrossRef]
- Yudhanto, A.; Lubineau, G.; Ventura, I.A.; Watanabe, N.; Iwahori, Y.; Hoshi, H. Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension. Compos. Part A Appl. Sci. Manuf. 2015, 71, 17–31. [Google Scholar] [CrossRef]
- Amini, G.; Gharehaghaji, A.A. Improving adhesion of electrospun nanofiber mats to supporting substrate by using adhesive bonding. Int. J. Adhes. Adhes. 2018, 86, 40–44. [Google Scholar] [CrossRef]
- Brugo, T.M.; Minak, G.; Zucchelli, A.; Saghafi, H.; Fotouhi, M. An Investigation on the Fatigue based Delamination of Woven Carbon-epoxy Composite Laminates Reinforced with Polyamide Nanofibers. Procedia Eng. 2015, 109, 65–72. [Google Scholar] [CrossRef]
- Brugo, T.; Minak, G.; Zucchelli, A.; Yan, X.T.; Belcari, J.; Saghafi, H.; Palazzetti, R. Study on Mode I fatigue behaviour of Nylon 6,6 nanoreinforced CFRP laminates. Compos. Struct. 2017, 164, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Bovicelli, F.; Saghafi, H.; Brugo, T.M.; Belcari, J.; Zucchelli, A.; Minak, G. On Consideration the Mode I Fracture Response of CFRP Composite Interleaved by Composite Nanofibers. Procedia Mater. Sci. 2014, 3, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, A.; Najafabadi, M.A.; Saghafi, H.; Mohammadi, R. Considering damages to open-holed composite laminates modified by nanofibers under the three-point bending test. Polym. Test. 2018, 70, 363–377. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Najafabadi, M.A.; Saghafi, H.; Mohammadi, R. Considering damage during fracture tests on nanomodified laminates using the acoustic emission method. Eur. J. Mech. 2018, 72, 452–463. [Google Scholar] [CrossRef]
- Yademellat, H.; Nikbakht, A.; Saghafi, H.; Sadighi, M. Experimental and numerical investigation of low velocity impact on electrospun nanofiber modified composite laminates. Compos. Struct. 2018, 200, 507–514. [Google Scholar] [CrossRef]
- Saghafi, H.; Ghaffarian, S.R.; Salimi-Majd, D.; Saghafi, H.A. Investigation of interleaf sequence effects on impact delamination of nano-modified woven composite laminates using cohesive zone model. Compos. Struct. 2017, 166, 49–56. [Google Scholar] [CrossRef]
- Hamer, S.; Leibovich, H.; Green, A.; Avrahami, R.; Zussman, E.; Siegmann, A.; Sherman, D. Mode I and Mode II fracture energy of MWCNT reinforced nanofibrilmats interleaved carbon/epoxy laminates. Compos. Sci. Technol. 2014, 90, 48–56. [Google Scholar] [CrossRef]
- Saghafi, H.; Ghaffarian, S.R.; Brugo, T.M.; Minak, G.; Zucchelli, A.; Saghafi, H.A. The effect of nanofibrous membrane thickness on fracture behaviour of modified composite laminates—A numerical and experimental study. Compos. Part B Eng. 2016, 101, 116–123. [Google Scholar] [CrossRef]
- Akangah, P.; Shivakumar, K. Impact Damage Resistance and Tolerance of Polymer Nanofiber Interleaved Composite Laminates. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012. [Google Scholar] [CrossRef]
- Akangah, P.; Shivakumar, K. Assessment of Impact Damage Resistance and Tolerance of Polymer Nanofiber Interleaved Composite Laminates. J. Chem. Sci. Technol. 2013, 2, 39–52. [Google Scholar]
- Akangah, P.; Lingaiah, S.; Shivakumar, K. Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Compos. Struct. 2010, 92, 1432–1439. [Google Scholar] [CrossRef]
- Shivakumar, K.; Lingaiah, S.; Chen, H.; Akangah, P.; Swaminathan, G.; Russell, L. Polymer Nanofabric Interleaved Composite Laminates. AIAA J. 2009, 47, 1723–1729. [Google Scholar] [CrossRef]
- Ahmed, H.; Shivakumar, K. Low Velocity Impact Damage Analysis of Nylon-66 Nanofiber Interleaf Composite Laminate. In Proceedings of the American Society of Composites-30th Technical Conference, East Lansing, MI, USA, 28–30 September 2015. [Google Scholar]
- Palazzetti, R.; Zucchelli, A.; Trendafilova, I. The self-reinforcing effect of Nylon 6,6 nano-fibres on CFRP laminates subjected to low velocity impact. Compos. Struct. 2013, 106, 661–671. [Google Scholar] [CrossRef]
- Palazzetti, R.; Zucchelli, A.; Ramakrishna, S. Nanofiber influence on low velocity impact and on vibrational behaviors of composite laminate plates. In Proceedings of the European Conference on Composite Materials, Venice, Italy, 24–28 June 2012. [Google Scholar]
- Zarei, H.; Brugo, T.; Belcari, J.; Bisadi, H.; Minak, G.; Zucchelli, A. Low velocity impact damage assessment of GLARE fiber-metal laminates interleaved by Nylon 6,6 nanofiber mats. Compos. Struct. 2017, 167, 123–131. [Google Scholar] [CrossRef]
- Anand, A.; Kumar, N.; Harshe, R.; Joshi, M. Glass/epoxy structural composites with interleaved nylon 6/6 nanofibers. J. Compos. Mater. 2016, 51, 3291–3298. [Google Scholar] [CrossRef]
- Anand, A.; Harshe, R.; Joshi, M. Resin film infusion: Toward structural composites with nanofillers. J. Appl. Polym. Sci. 2012, 129, 1618–1624. [Google Scholar] [CrossRef]
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Damage-Resistant Composites Using Electrospun Nanofibers: A Multiscale Analysis of the Toughening Mechanisms. ACS Appl. Mater. Interfaces 2016, 8, 11806–11818. [Google Scholar] [CrossRef]
- Daelemans, L.; Cohades, A.; Meireman, T.; Beckx, J.; Spronk, S.; Kersemans, M.; De Baere, I.; Rahier, H.; Michaud, V.; Van Paepegem, W.; et al. Electrospun nanofibrous interleaves for improved low velocity impact resistance of glass fibre reinforced composite laminates. Mater. Des. 2018, 141, 170–184. [Google Scholar] [CrossRef]
- Giuliese, G.; Pirondi, A.; Furlotti, E.; Zucchelli, A.; Palazzetti, R. Virtual assessment of a composite laminate with interleaved nanofibrous mat under impact loading. In Proceedings of the European Conference on Composite Materials, Seville, Spain, 22–26 June 2014. [Google Scholar]
- Saghafi, H.; Brugo, T.; Minak, G.; Zucchelli, A. Improvement the impact damage resistance of composite materials by interleaving Polycaprolactone nanofibers. Eng. Solid Mech. 2015, 3, 21–26. [Google Scholar] [CrossRef]
- Parimala, R.; Jabaraj, D.B. A study on nanophased biaxial carbon braided composites. Mater. Today Proc. 2016, 3, 2268–2277. [Google Scholar] [CrossRef]
- Arai, M.; Ito, H.; Nishimura, M.; Zakoji, T.; Quaresimin, M. CAI strength of CFRP laminates toughened with multi-walled carbon nanofiber. In Proceedings of the European Conference on Composite Materials, Seville, Spain, 22–26 June 2014. [Google Scholar]
- Ito, H.; Arai, M.; Takeyama, K.; Hu, N.; Quaresimin, M. Impact Damage and Residual Compression Strength of CNF/CFRP Hybrid Laminates. J. Solid Mech. Mater. Eng. 2013, 7, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Monti, M.; Natali, M.; Petrucci, R.; Kenny, J.M.; Torre, L. Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin. Polym. Compos. 2011, 32, 766–775. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hosur, M.; Hsiao, K.-T.; Wallace, L.; Jeelani, S. Low velocity impact properties of carbon nanofibers integrated carbon fiber/epoxy hybrid composites manufactured by OOA–VBO process. Compos. Struct. 2015, 120, 32–40. [Google Scholar] [CrossRef]
- Kimbro, E.; Kelkar, A.D. Development of Energy Absorbing Laminated Fiberglass Composites Using Electrospun Glass Nanofibers. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; pp. 539–545. [Google Scholar]
- Rasel, A.; Kimbro, E.; Mohan, R.; Kelar, A.D. Computational and Experimental Investigation of the Low Velocity Impact Behavior of Nano Engineered E-Glass Fiber Reinforced Composite Laminates. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; pp. 263–267. [Google Scholar]
- Kimbro, E.; Kelkar, A.; Mohan, R. Compression after impact behavior of electrospun nanofiber embedded fiber glass composite laminates. In Proceedings of the European Conference on Composite Materials, Venice, Italy, 24–28 June 2012. [Google Scholar]
- Liu, L.; Huang, Z.; Dong, G.; Yuan, G.; Lin, G. Fabrication and mechanical properties of composite laminates with epoxy-SiC compound ultrafine fiber interfaces. Acta Materiae Compositae Sinica 2006, 23, 20–24. [Google Scholar]
- Saghafi, H.; Palazzetti, R.; Zucchelli, A.; Minak, G. Impact response of glass/epoxy laminate interleaved with nanofibrous mats. Eng. Solid Mech. 2013, 1, 85–90. [Google Scholar] [CrossRef]
- Neisiany, R.E.; Khorasani, S.N.; Lee, J.K.Y.; Naeimirad, M.; Ramakrishna, S. Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theor. Appl. Fract. Mech. 2018, 95, 242–247. [Google Scholar] [CrossRef]
- Beylergil, B.; Tanoǧlu, M.; Aktaş, E. Modification of carbon fibre/epoxy composites by polyvinyl alcohol (PVA) based electrospun nanofibres. Adv. Compos. Lett. 2016, 25, 69–76. [Google Scholar]
- Molnár, K.; Košt’áková, E.; Mészáros, L. The effect of needleless electrospun nanofibrous interleaves on mechanical properties of carbon fabrics/epoxy laminates. Express Polym. Lett. 2014, 8, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Poel, G.V.; Goossens, S.; Goderis, B.; Groeninckx, G. Reaction induced phase separation in semicrystalline thermoplastic/epoxy resin blends. Polymer 2005, 46, 10758–10771. [Google Scholar] [CrossRef]
- Saghafi, H.; Brugo, T.; Minak, G.; Zucchelli, A. The effect of PVDF nanofibers on mode-I fracture toughness of composite materials. Compos. Part B Eng. 2015, 72, 213–216. [Google Scholar] [CrossRef]
- Warren, J.; Offenberger, S.; Lacy, T.; Toghiani, H. Characterization of Debris Cloud Distribution and Damage Caused by Hypervelocity Impacts on Vapor Grown Carbon Nanofiber Reinforced Laminate Shielding. In Proceedings of the American Society for Composites 27th Annual Technical Conference, Arlington, TX, USA, 1–3 October 2012. [Google Scholar]
- Klosterman, D.; Williams, M.; Heitkamp, C.; Donaldson, R.; Browning, C. Fabrication and evolution of epoxy nanocomposites and carbon/epoxy composite laminates containing oxidized carbon nanofibers. In Proceedings of the 44th International SAMPE Symposium and Exibition, Long Beach, CA, USA, 4–7 December 2007. [Google Scholar]
- Xie, X.-L.; Mai, Y.-W.; Zhou, X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. 2005, 49, 89–112. [Google Scholar] [CrossRef]
- Hunston, D.L.; Moulton, R.J.; Johnston, N.J.; Bascom, W. Matrix resin effects in composite delamination: Mode I fracture aspects. In Toughened Composites; ASTM International: West Conshohocken, PA, USA, 1987. [Google Scholar]
- Yee, A.F. Modifying matrix materials for tougher composites. In Toughened Composites; ASTM International: West Conshohocken, PA, USA, 1987. [Google Scholar]
- Kuboki, T.; Jar, P.Y.B.; Forest, T.W. Influence of interlaminar fracture toughness on impact resistance of glass fibre reinforced polymers. Compos. Sci. Technol. 2003, 63, 943–953. [Google Scholar] [CrossRef]
- Sharma, V.K.; McDonald, T.J.; Kim, H.; Garg, V.K. Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv. Colloid Interface Sci. 2015, 225, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Pokropivny, V.V.; Skorokhod, V.V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 2007, 27, 990–993. [Google Scholar] [CrossRef]
- Rosso, P.; Ye, L.; Friedrich, K.; Sprenger, S. A toughened epoxy resin by silica nanoparticle reinforcement. J. Appl. Polym. Sci. 2006, 100, 1849–1855. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Friedrich, K.; Eger, C. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 2006, 54, 1833–1842. [Google Scholar] [CrossRef]
- Buchman, A.; Dodiuk-Kenig, H.; Dotan, A.; Tenne, R.; Kenig, S. Toughening of Epoxy Adhesives by Nanoparticles. J. Adhes. Sci. Technol. 2009, 23, 753–768. [Google Scholar] [CrossRef]
- Wetzel, B.; Rosso, P.; Haupert, F.; Friedrich, K. Epoxy nanocomposites – fracture and toughening mechanisms. Eng. Fract. Mech. 2006, 73, 2375–2398. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, L.; Liu, G.; Zhang, D.; Zhou, L.; Zhang, Z. The effects of alumina nanofillers on mechanical properties of high-performance epoxy resin. J. Nanosci. Nanotechnol. 2010, 10, 7526–7532. [Google Scholar] [CrossRef]
- Gilbert, E.N.; Hayes, B.S.; Seferis, J.C. Interlayer toughened unidirectional carbon prepreg systems: Effect of preformed particle morphology. Compos. Part A Appl. Sci. Manuf. 2003, 34, 245–252. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, H.-Y.; Mai, Y.-W.; Du, X.-S. Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Compos. Part B Eng. 2012, 43, 90–94. [Google Scholar] [CrossRef]
- Tang, Y.; Ye, L.; Zhang, D.; Deng, S. Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10 wt % and 20 wt % silica nanoparticles in matrix resins. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1943–1950. [Google Scholar] [CrossRef]
- Gojny, F.; Wichmann, M.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 2004, 64, 2363–2371. [Google Scholar] [CrossRef]
- Sprenger, S.; Kothmann, M.H.; Altstaedt, V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos. Sci. Technol. 2014, 105, 86–95. [Google Scholar] [CrossRef]
- Bozkurt, Ö.Y.; Özbek, Ö.; Abdo, A.R. The Effects of Nanosilica on Charpy Impact Behavior of Glass/Epoxy Fiber Reinforced Composite Laminates. Period. Eng. Nat. Sci. 2017, 5, 13–34. [Google Scholar] [CrossRef]
- Vashisth, A.; Bakis, C.E.; Ruggeri, C.R.; Henry, T.C.; Roberts, G.D. Ballistic impact response of carbon/epoxy tubes with variable nanosilica content. J. Compos. Mater. 2018, 52, 1589–1604. [Google Scholar] [CrossRef]
- Haro, E.E.; Odeshi, A.G.; Szpunar, J.A. The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact. Int. J. Impact Eng. 2016, 96, 11–22. [Google Scholar] [CrossRef]
- Inam, F.; Wong, D.W.; Kuwata, M.; Peijs, T. Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J. Nanomater. 2010, 2010, 9. [Google Scholar] [CrossRef]
- Ashrafi, B.; Guan, J.; Mirjalili, V.; Zhang, Y.; Chun, L.; Hubert, P.; Simard, B.; Kingston, C.T.; Bourne, O.; Johnston, A. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos. Sci. Technol. 2011, 71, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Mannov, E.; Schmutzler, H.; Chandrasekaran, S.; Viets, C.; Buschhorn, S.; Tölle, F.; Mülhaupt, R.; Schulte, K. Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Compos. Sci. Technol. 2013, 87, 36–41. [Google Scholar] [CrossRef]
- Grujicic, M.; Bell, W.; Thompson, L.; Koudela, K.; Cheeseman, B. Ballistic-protection performance of carbon-nanotube-doped poly-vinyl-ester-epoxy matrix composite armor reinforced with E-glass fiber mats. Mater. Sci. Eng. A 2008, 479, 10–22. [Google Scholar] [CrossRef]
- Li, J.; Bai, T. The effect of CNT modification on the mechanical properties of polyimide composites with and without MoS 2. Mech. Compos. Mater. 2012, 47, 597–602. [Google Scholar] [CrossRef]
- Xu, Y.; Van Hoa, S. Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 2008, 68, 854–861. [Google Scholar] [CrossRef]
- Iqbal, K.; Khan, S.-U.; Munir, A.; Kim, J.-K. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Compos. Sci. Technol. 2009, 69, 1949–1957. [Google Scholar] [CrossRef]
- Reis, P.; Ferreira, J.; Santos, P.; Richardson, M.; Santos, J. Impact response of Kevlar composites with filled epoxy matrix. Compos. Struct. 2012, 94, 3520–3528. [Google Scholar] [CrossRef]
- Mohan, T.; Velmurugan, R.; Kanny, K. Damping characteristics of nanoclay filled hybrid laminates during medium velocity impact. Compos. Part B Eng. 2015, 82, 178–189. [Google Scholar] [CrossRef]
- Reis, P.; Ferreira, J.; Zhang, Z.; Benameur, T.; Richardson, M. Impact response of Kevlar composites with nanoclay enhanced epoxy matrix. Compos. Part B Eng. 2013, 46, 7–14. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Huang, Y.-S.; Shen, M.-Y. Mechanical properties and toughness of carbon aerogel/epoxy polymer composites. J. Mater. Sci. 2015, 50, 3258–3266. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Huang, Y.-S.; Wang, F.-X.; Shen, M.-Y. Impact and after-impact properties of nanocarbon aerogels reinforced epoxy/carbon fiber composite laminates. Compos. Struct. 2018, 206, 828–838. [Google Scholar] [CrossRef]
- Deng, S.; Ye, L.; Friedrich, K. Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures. J. Mater. Sci. 2007, 42, 2766–2774. [Google Scholar] [CrossRef]
- Schueler, R.; Petermann, J.; Schulte, K.; Wentzel, H.P. Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J. Appl. Polym. Sci. 1997, 63, 1741–1746. [Google Scholar] [CrossRef]
- Wichmann, M.H.; Sumfleth, J.; Gojny, F.H.; Quaresimin, M.; Fiedler, B.; Schulte, K. Glass-fibre-reinforced composites with enhanced mechanical and electrical properties–benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 2006, 73, 2346–2359. [Google Scholar] [CrossRef]
- Tsai, J.-L.; Huang, B.-H.; Cheng, Y.-L. Enhancing fracture toughness of glass/epoxy composites by using rubber particles together with silica nanoparticles. J. Compos. Mater. 2009, 43, 3107–3123. [Google Scholar] [CrossRef]
- Hsieh, T.; Kinloch, A.; Masania, K.; Lee, J.S.; Taylor, A.; Sprenger, S. The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 2010, 45, 1193–1210. [Google Scholar] [CrossRef]
- Ye, L.; Tang, Y.; Zhang, D. Interlaminar fracture and CAI of CF/EP composite laminates with nanoparticles in matrix resins. In Proceedings of the 6th International Conference on Fracture of Polymers, Les Diablerets, Switzerland, 11–15 September 2011. [Google Scholar]
- Zhang, D.; Ye, L.; Wang, D.; Tang, Y.; Mustapha, S.; Chen, Y. Assessment of transverse impact damage in GF/EP laminates of conductive nanoparticles using electrical resistivity tomography. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1587–1598. [Google Scholar] [CrossRef]
- Ogasawara, T.; Ishida, Y.; Kasai, T. Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos. Sci. Technol. 2009, 69, 2002–2007. [Google Scholar] [CrossRef]
- Johnsen, B.; Kinloch, A.; Mohammed, R.; Taylor, A.; Sprenger, S. Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 2007, 48, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Amooyi Dizaji, R.; Yazdani, M.; Aligholizadeh, E.; Rashed, A. Effect of 3D-woven glass fabric and nanoparticles incorporation on impact energy absorption of GLARE composites. Polym. Compos. 2018, 39, 3528–3536. [Google Scholar] [CrossRef]
- Barbezat, M.; Brunner, A.; Necola, A.; Rees, M.; Gasser, P.; Terrasi, G. Fracture behavior of GFRP laminates with nanocomposite epoxy resin matrix. J. Compos. Mater. 2009, 43, 959–976. [Google Scholar] [CrossRef]
- Shanazari, H.; Liaghat, G.; Feli, S.; Hadavinia, H. Analytical and experimental study of high-velocity impact on ceramic/nanocomposite targets. J. Compos. Mater. 2017, 51, 3743–3756. [Google Scholar] [CrossRef] [Green Version]
- Afrouzian, A.; Movahhedi Aleni, H.; Liaghat, G.; Ahmadi, H. Effect of nano-particles on the tensile, flexural and perforation properties of the glass/epoxy composites. J. Reinf. Plast. Compos. 2017, 36, 900–916. [Google Scholar] [CrossRef]
- Fiedler, B.; Gojny, F.H.; Wichmann, M.H.; Nolte, M.C.; Schulte, K. Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 2006, 66, 3115–3125. [Google Scholar] [CrossRef]
- Godara, A.; Mezzo, L.; Luizi, F.; Warrier, A.; Lomov, S.V.; Van Vuure, A.; Gorbatikh, L.; Moldenaers, P.; Verpoest, I. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 2009, 47, 2914–2923. [Google Scholar] [CrossRef]
- Warrier, A.; Godara, A.; Rochez, O.; Mezzo, L.; Luizi, F.; Gorbatikh, L.; Lomov, S.V.; VanVuure, A.W.; Verpoest, I. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Compos. Part A Appl. Sci. Manuf. 2010, 41, 532–538. [Google Scholar] [CrossRef]
- Yokozeki, T.; Iwahori, Y.; Ishibashi, M.; Yanagisawa, T.; Imai, K.; Arai, M.; Takahashi, T.; Enomoto, K. Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Compos. Sci. Technol. 2009, 69, 2268–2273. [Google Scholar] [CrossRef]
- Garcia, E.J.; Wardle, B.L.; Hart, A.J.; Yamamoto, N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 2008, 68, 2034–2041. [Google Scholar] [CrossRef]
- Wardle, B.L.; Saito, D.S.; García, E.J.; Hart, A.J.; de Villoria, R.G.; Verploegen, E.A. Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube–polymer composites. Adv. Mater. 2008, 20, 2707–2714. [Google Scholar] [CrossRef]
- Ahir, S.; Huang, Y.; Terentjev, E. Polymers with aligned carbon nanotubes: Active composite materials. Polymer 2008, 49, 3841–3854. [Google Scholar] [CrossRef]
- Quaresimin, M.; Varley, R.J. Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates. Compos. Sci. Technol. 2008, 68, 718–726. [Google Scholar] [CrossRef]
- Tang, Y.; Deng, S.; Ye, L.; Yang, C.; Yuan, Q.; Zhang, J.; Zhao, C. Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 345–354. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, H.; Wu, J.; Chan, C.M. Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix. Compos. Sci. Technol. 2011, 71, 717–723. [Google Scholar] [CrossRef]
- Xie, G.; Zhou, G.; Bao, X. Mechanical behaviour of advanced composite laminates embedded with carbon nanotubes. In Proceedings of the Second International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, China, 8–11 July 2009. [Google Scholar]
- Drakonakis, V.M.; Velisaris, C.N.; Seferis, J.C.; Doumanidis, C.C.; Wardle, B.L.; Papanicolaou, G.C. Matrix hybridization in the interlayer for carbon fiber reinforced composites. Polym. Compos. 2010, 31, 1965–1976. [Google Scholar] [CrossRef] [Green Version]
- Zulfli, N.M.; Bakar, A.A.; Chow, W. Mechanical and thermal properties improvement of nano calcium carbonate-filled epoxy/glass fiber composite laminates. High Perform. Polym. 2014, 26, 223–229. [Google Scholar] [CrossRef]
- Koziol, M.; Jesionek, M.; Szperlich, P. Addition of a small amount of multiwalled carbon nanotubes and flaked graphene to epoxy resin. J. Reinf. Plast. Compos. 2017, 36, 640–654. [Google Scholar] [CrossRef]
- Kostopoulos, V.; Baltopoulos, A.; Karapappas, P.; Vavouliotis, A.; Paipetis, A. Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 2010, 70, 553–563. [Google Scholar] [CrossRef]
- Chang, M.S. An investigation on the dynamic behavior and thermal properties of MWCNTs/FRP laminate composites. J. Reinf. Plast. Compos. 2010, 29, 3593–3599. [Google Scholar] [CrossRef]
- Venkatanarayanan, P.; Stanley, A.J. Intermediate velocity bullet impact response of laminated glass fiber reinforced hybrid (HEP) resin carbon nano composite. Aerosp. Sci. Technol. 2012, 21, 75–83. [Google Scholar] [CrossRef]
- Tehrani, M.; Boroujeni, A.; Hartman, T.; Haugh, T.; Case, S.; Al-Haik, M. Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Compos. Sci. Technol. 2013, 75, 42–48. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Z.; Hei, Y.; Zhang, B.; Bao, J.; Chen, X. Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer. Compos. Sci. Technol. 2014, 95, 75–81. [Google Scholar] [CrossRef]
- Adak, N.C.; Chhetri, S.; Kuila, T.; Murmu, N.C.; Samanta, P.; Lee, J.H. Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite. Compos. Part B Eng. 2018, 149, 22–30. [Google Scholar] [CrossRef]
- Reda Taha, M.; Colak-Altunc, A.; Kim, J.; Al-Haik, M. Probabilistic Design of Blast Resistant Composites Using Carbon Nanotubes. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, Orlando, FL, USA, 12–15 April 2010. [Google Scholar]
- Kostopoulos, V.; Vavouliotis, A.; Karapappas, P. Carbon nanotube epoxy modified CFRPs: Toward improved mechanical and sensing for multifunctional aerostructures. In Proceedings of the Behavior and Mechanics of Multifunctional and Composite Materials, San Diego, CA, USA, 10–13 March 2008. [Google Scholar]
- Yokozeki, T.; Iwahori, Y.; Ishiwata, S.; Enomoto, K. Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2121–2130. [Google Scholar] [CrossRef]
- Kessler, S.S.; Raghavan, A.; Dunn, C.T.; Wicks, S.S.; Guzman deVilloria, R.; Wardle, B.L. Fabrication of a multi-physics integral structural diagnostic system utilizing nano-engineered materials. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, Portland, OR, USA, 10–14 October 2010. [Google Scholar]
- Grammatikos, S.; Kordatos, E.; Matikas, T.; David, C.; Paipetis, A. Current injection phase thermography for low-velocity impact damage identification in composite laminates. Mater. Des. 2014, 55, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Woo, R.S.; Kim, J.-K.; Leung, C.C.; Munir, A. Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos. Part A Appl. Sci. Manuf. 2007, 38, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Subramaniyan, A.K.; Sun, C. Interlaminar fracture behavior of nanoclay reinforced glass fiber composites. J. Compos. Mater. 2008, 42, 2111–2122. [Google Scholar] [CrossRef]
- Avila, A.F.; Soares, M.I.; Neto, A.S. A study on nanostructured laminated plates behavior under low-velocity impact loadings. Int. J. Impact Eng. 2007, 34, 28–41. [Google Scholar] [CrossRef]
- Palaniradja, K.; Thiagarajan, A.; Rajesh Mathivanan, N. Effect of Nanoclay in Epoxy-based Fibre-glass Composite Laminates subjected to Low Velocity Impact. Int. J. Veh. Struct. Syst. 2011, 3, 2598–2609. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A.; Quaresimin, M. Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates. Mater. Sci. Eng. A 2011, 528, 6324–6333. [Google Scholar] [CrossRef]
- Anbusagar, N.; Giridharan, P.; Palanikumar, K. Effect of nanomodified polyester resin on hybrid sandwich laminates. Mater. Des. 2014, 54, 507–514. [Google Scholar] [CrossRef]
- Koricho, E.G.; Khomenko, A.; Haq, M.; Drzal, L.T.; Belingardi, G.; Martorana, B. Effect of hybrid (micro-and nano-) fillers on impact response of GFRP composite. Compos. Struct. 2015, 134, 789–798. [Google Scholar] [CrossRef]
- Ferreira, J.; Santos, D.; Capela, C.; Costa, J. Impact response of nano reinforced mat glass/epoxy laminates. Fibers Polym. 2015, 16, 173–180. [Google Scholar] [CrossRef]
- Anbusagar, N.; Palanikumar, K.; Giridharan, P. Study of sandwich effect on nanoclay modified polyester resin GFR face sheet laminates. Compos. Struct. 2015, 125, 336–342. [Google Scholar] [CrossRef]
- Rostamiyan, Y.; Fereidoon, A.; Mashhadzadeh, A.H.; Ashtiyani, M.R.; Salmankhani, A. Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos. Part B Eng. 2015, 69, 304–316. [Google Scholar] [CrossRef]
- Pekbey, Y.; Aslantaş, K.; Yumak, N. Ballistic impact response of Kevlar Composites with filled epoxy matrix. Steel Compos. Struct. 2017, 22, 191–200. [Google Scholar]
- Ávila, A.F.; Dias, E.C.; Cruz, D.T.L.D.; Yoshida, M.I.; Bracarense, A.Q.; Carvalho, M.G.R.; Ávila Junior, J.D. An investigation on graphene and nanoclay effects on hybrid nanocomposites post fire dynamic behavior. Mater. Res. 2010, 13, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Velmurugan, R.; Balaganesan, G. Energy absorption characteristics of glass/epoxy nano composite laminates by impact loading. Int. J. Crashworth. 2013, 18, 82–92. [Google Scholar] [CrossRef]
- Balaganesan, G.; Velmurugan, R.; Srinivasan, M.; Gupta, N.K.; Kanny, K. Energy absorption and ballistic limit of nanocomposite laminates subjected to impact loading. Int. J. Impact Eng. 2014, 74, 57–66. [Google Scholar] [CrossRef]
- Hosur, M.V.; Chowdhury, F.; Jeelani, S. Low-velocity impact response and ultrasonic NDE of woven carbon/epoxy—Nanoclay nanocomposites. J. Compos. Mater. 2007, 41, 2195–2212. [Google Scholar] [CrossRef]
- Rafiq, A.; Merah, N.; Boukhili, R.; Al-Qadhi, M. Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite. Polym. Test. 2017, 57, 1–11. [Google Scholar] [CrossRef]
- Mahdi, T.H.; Islam, M.E.; Hosur, M.V.; Jeelani, S. Low-velocity impact performance of carbon fiber-reinforced plastics modified with carbon nanotube, nanoclay and hybrid nanoparticles. J. Reinf. Plast. Compos. 2017, 36, 696–713. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Huang, Y.-S. The mechanical properties and delamination of carbon fiber-reinforced polymer laminates modified with carbon aerogel. J. Mater. Sci. 2017, 52, 3520–3534. [Google Scholar] [CrossRef]
- Li, G.; Li, P.; Yu, Y.; Jia, X.; Zhang, S.; Yang, X.; Ryu, S. Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers. Mater. Lett. 2008, 62, 511–514. [Google Scholar] [CrossRef]
- Li, P.; Liu, D.; Zhu, B.; Li, B.; Jia, X.; Wang, L.; Li, G.; Yang, X. Synchronous effects of multiscale reinforced and toughened CFRP composites by MWNTs-EP/PSF hybrid nanofibers with preferred orientation. Compos. Part A Appl. Sci. Manuf. 2015, 68, 72–80. [Google Scholar] [CrossRef]
- Nezhad, H.; Thakur, V. Effect of Morphological Changes due to Increasing Carbon Nanoparticles Content on the Quasi-Static Mechanical Response of Epoxy Resin. Polymers 2018, 10, 1106. [Google Scholar] [CrossRef]
Ref. | Polymer | Composite Type | Impact Energy | Stacking Sequence | Curing Temperature |
---|---|---|---|---|---|
[22,23] | NY66 (0.7 g/m2) | Carbon/epoxy (AS4/3501-6 prepreg) | 2.87 J to 13.3 J | (−45/90/45/0)3S | 177 °C |
[24] | NY66 (1.6–2 g/m2) | Carbon/epoxy (AS4/3501-6 prepreg) | 0.46 J to 1.80 J | [0/45/90/−45]2S | 177 °C |
[24,25] | NY66 (1.6–2 g/m2) | Carbon/epoxy (AS4/3501-6 and T800H/3900-2 prepreg) | 0.46 J to 0.8 J | [0/45/90/−45]2S | 177 °C |
[26] | NY66 (0.5, 1.5, 2.5 g/m2 ) | Carbon/epoxy (AS4/3501-6) | - | - | 177 °C |
[27,28] | NY66 (25 μm) | Carbon/epoxy (Woven) | 3, 6, 12 J | [0]10 | 130 °C |
[29] | NY66 (40 μm) | Glass Laminate Aluminum Reinforced Epoxy (GLARE) | 6, 12, 18 and 32 J | AL+[0/90]s+AL | 120 °C |
[30] | NY66 (0.1, 0.2, 0.4 g/m2) | Glass/epoxy (Bidirectional) | 35 J | - | - |
[32] | NY6, PCL (6 g/m2) | Glass/epoxy (Unidirectional) | 67 J | [0/90]2S | 24 °C (24 h)+ 80 °C (15 h) |
[33] | NY6, NY69, PCL (6 and 12 g/m2) | Glass/epoxy (Unidirectional) | 14, 28, 41, 54, 67, 79 J | [0/90]2S | 24 °C (24 h)+ 80 °C (15 h) |
[34] | NY66 | Carbon/epoxy (Unidirectional) | 2.1 J | [03/906/03] | - |
[18] | NY66 | Glass/epoxy (Unidirectional) | 30 J | [0/90]5 | 120 °C |
[19] | NY66 | Carbon/epoxy (plain woven) | 40.5 J | [[(0/90)/(+45/−45)/(0/90)/(+45/−45)/(0/90)/(+45/−45)]S] | 24 °C (24 h)+ 80 °C (5 h) |
[35] | PCL | Glass/epoxy (Unidirectional) | 24 and 36 J | [0/90/0/90]S | 150 °C (1 h) |
[36] | Carbon | biaxial braided carbon fiber/epoxy | - | - | Room Temp. (24 h)+ 100 °C (1 h) |
[37] | Carbon (1.2% vol. and 1.5% vol.) | Carbon/epoxy (twill woven) | 2.17, 4.34, 6.52, 8.69 J | [0/90]18 | 80 °C (4 h) 120 °C (2 h) |
[38] | Carbon (10, 20, 30 g/m2) | Carbon/epoxy (Unidirectional) | 2.17, 4.34, 6.52 and 8.9 | [0°2/90°4/0°2]S [0°2/90°2/0°2/90°2]S [0°2/45°2/90°2/−45°2]S | - |
[39] | Carbon | Glass/Polyerster | - | - | Room Temp. (12 h)+ 55 °C (1.5 h) +70 °C (1.5 h) |
[40] | Carbon | Carbon/epoxy (Prepreg) | 10, 20 and 30 J | [0]16 | 80 °C (0.5 h) + 120 °C (2.5 h) |
[41,42,43] | TEOS (8 g/m2) | Glass/epoxy (Woven) | 7, 15, 23, 31, 39 J | [0]10 | 120 °C (2 h) |
[44] | Epoxy 609 (E-03 609) and SiC | - | - | - | - |
[45] | Polyvinylidene fluoride (PVDF) 39 and 64 μm | Glass/epoxy (Unidirectional) | 5 J | [0/90/0/90]S | 130 °C (1 h) |
[46] | Styrene Acrylonitrile (SAN) (1 g/m2) | carbon fiber/epoxy (unidirectional) | Izod impact | [0]6 | Room Temp. (18 h)+ 60 °C (0.5 h) |
[47] | polyvinyl alcohol (PVA) (7.1 g/m2) | carbon fiber/epoxy (unidirectional) | Charpy-impact | [0]4 | Room Temp. + 80 °C (12 h) |
[48] | polyacrylonitrile (PAN) | carbon fiber/epoxy (unidirectional and woven) | 1-Charpy test (2 J) 2-drop-weight impact test (0.6 J) | Woven: [0/90]4 Unidirectional: [0]3, [0]6 | 25 °C (6 h) + 60 °C (4 h) |
Ref. | Particle Type | Composite Type | Test Method | Improvement (%) | Content |
---|---|---|---|---|---|
[59] | Nanosilica | Epoxy | Compact tension ASTM Standard D5045–02 | Gc value increased by more than 140% | 5 vol %. |
[60] | Nanosilica | Epoxy | Un-notched Charpy DIN-ISO-179-2 Compact tension ASTM Standard D5045–02 | Kc value increased 78% with 14 vol % (23 wt %). Impact resistance increased 23% with 3% vol | - |
[61] | Fullerene-like tungsten disulfide | Epoxy | DCB (ASTM D-3433) T-peel joints (ASTM D-1876) Charpy impact (ASTM D-950) | Impact strength improved more than 200%. GC increased by 3 to more than 10 times compared to neat epoxy. | 3 wt % |
[62] | Aluminum oxide | Epoxy | Flexural testing ENISO 178 | GC increased by 120% | 10 vol % |
[63] | Alumina Nanofillers | Epoxy | Tensile ASTM D-638 Compact tension ASTM D5045–02 | About 50% and 80% increases of KIC and GIC | 18.4 wt % |
[64] | Rubber | Carbon/epoxy | DCB (BSS 7273) ENF (BMS 8-276) Impact and CAI (BSS 7260) | GIIC improved about 250% GIC improved about 33% Impact induced damage area decreased 82% | 38% |
[65] | Nanosilica and Nano-rubber | Carbon/epoxy | DCB ASTM Standard D5528 | GIC improved about 250% for the nano-rubber particle GIC improved about 20–30% for the nano-silica | 10 wt % |
[66] | Nano-silica | Carbon fiber/epoxy | DCB ASTM Standard D5528 ENF | GIC improved about 22% GIIC improved about 70% | 20 wt % |
[67] | Nanosilica | Epoxy | The single-edge notch bend (SENB) test ISO-13586 | GIC improved about 360% | 13.4 vol % |
[68] | Rubber and silica nanoparticles | Carbon/epoxy | DCB ASTM D5528, ENF DIN EN 6034 SENB ISO 13586 | The laminate made from the rubber-only resin shows an increase in GIc, a slight reduction in GIIc and ILSS as well as a reduction of the delaminated area in impact testing alongside with an increase in CAI. | 5–10 wt % |
[69] | Nanosilica | Glass/epoxy | Charpy impact tests | Impact energy and impact toughness were improved by 38.02%, 30.86% for edgewise-notched specimens and 32.83%, 27.1% for flatwise-unnotched specimens, respectively. | 1.5 wt % |
[70] | Nanosilica | Carbon/epoxy | Ballistic impact | The absorbed impact energy per unit damage area increased by 90–155%. | 25 wt %. |
[71] | Powders of aluminum, gamma alumina, silicon carbide, colloidal silica and potato flour | Kevlar/epoxy and AA 5086-H32 aluminum hybrid | Ballistic impact NATO standards using a caliber 270 Winchester rifle | The highest impact energy absorption capacity was achieved by deposition of aluminum powder followed be colloidal silica and silicon carbide powder in that order. Addition of gamma alumina powder and potato flour has produced the least effect of enhancing the impact energy absorption capability of the laminates. | Variable |
[72] | Carbon nanotubes (CNTs) | Carbon/epoxy | DCB ASTM D5528-01 Impact | 23% decrease in GIC 6% improvement in absorbed impact energy | 0.025, 0.05, and 0.1 wt %) |
[73] | Functionalized SWCNT | Carbon/epoxy | Impact, CAI, DCB, ENF | 5% reduction of the area of impact damage, 3.5% increase in CAI strength 13% increase in Mode I fracture toughness, 28% increase in Mode II interlaminar fracture toughness | 0.1 wt % |
[74] | Graphene oxide | Carbon/epoxy Glass/epoxy | Impact CAI ASTM D7137 | Improved residual compressive properties, with the glass fiber laminates showing the highest improvement of 55% | 0.3 and 0.5 wt % |
[75] | Multi-walled carbon-nanotube (MWCNT) | E-glass/epoxy | Ballistic impact | A relatively small increase in the ballistic-protection performance | - |
[76] | CNT, MOS2 | Polyimide (PI) composites | Izod notched impact strength | The impact strength of the composites decreased by 40% when CNT reached 1%. | 1 to 5 wt % |
[77] | Nanoclay | Carbon/epoxy | DCB | GIC improved about 85%. | 4 phr nanoclay in epoxy |
[78] | Nanoclay | Carbon/epoxy | Impact CAI | Smaller damage area, higher residual strength and higher threshold energy level. | 3 wt % |
[79] | Nanoclays | Kevlar/epoxy | Impact | The maximum load increased about 4.5% for laminates filled by cork, 10.4% for laminates filled by cork/clays and 16.1% for laminates filled by clays. | 1.5 wt % |
[80] | Nanoclay | Glass/epoxy | Medium velocity projectile impact | A 42% increase of ballistic limit | 5 wt % |
[81] | Nanoclays | Kevlar/epoxy | Impact Residual tensile strength | Impact load and the damaged area increases. Elastic recuperation and penetration threshold increases | 6% wt % |
[82] | Carbon aerogel | Epoxy | SENB ISO-13586 | The maximum measured GIC value improved 100% | 0.3 wt % |
[83] | Carbon aerogel | Carbon/epoxy | Impact CAI ASTM D7137 | CAI improved 10% Impact force 4% | 0.3 wt % |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saghafi, H.; Fotouhi, M.; Minak, G. Improvement of the Impact Properties of Composite Laminates by Means of Nano-Modification of the Matrix—A Review. Appl. Sci. 2018, 8, 2406. https://doi.org/10.3390/app8122406
Saghafi H, Fotouhi M, Minak G. Improvement of the Impact Properties of Composite Laminates by Means of Nano-Modification of the Matrix—A Review. Applied Sciences. 2018; 8(12):2406. https://doi.org/10.3390/app8122406
Chicago/Turabian StyleSaghafi, Hamed, Mohamad Fotouhi, and Giangiacomo Minak. 2018. "Improvement of the Impact Properties of Composite Laminates by Means of Nano-Modification of the Matrix—A Review" Applied Sciences 8, no. 12: 2406. https://doi.org/10.3390/app8122406
APA StyleSaghafi, H., Fotouhi, M., & Minak, G. (2018). Improvement of the Impact Properties of Composite Laminates by Means of Nano-Modification of the Matrix—A Review. Applied Sciences, 8(12), 2406. https://doi.org/10.3390/app8122406