Advances in the Assembly Model of Bacterial Type IVB Secretion Systems
Abstract
:1. Introduction
2. Gene Composition of T4BSS
3. Mosaic Structure Model of T4BSS
3.1. Core Complex
3.2. Substrate Recognition Protein
3.3. Other Functional Proteins
3.4. Proteins of Unknown Function
4. Comparison of T4BSS with Other Secretion Systems
5. Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Green, E.R.; Mecsas, J. Bacterial Secretion Systems: An Overview. Microbiol. Spectr. 2016, 4, 19. [Google Scholar] [CrossRef]
- Zhang, W.; Rong, C.; Chen, C.; Gao, G.F. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus Streptococcus. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Fronzes, R.; Christie, P.J.; Waksman, G. The structural biology of type IV secretion systems. Nat. Rev. Microbiol. 2009, 7, 703–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waksman, G.; Fronzes, R. Molecular architecture of bacterial type IV secretion systems. Trends Biochem. Sci. 2010, 35, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Wallden, K.; Rivera-Calzada, A.; Waksman, G. Type IV secretion systems: Versatility and diversity in function. Cell. Microbiol. 2010, 12, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Cascales, E.; Christie, P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 2003, 1, 137–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julin, D. Plasmid Incompatibility. Mol. Life Sci. 2014. [Google Scholar] [CrossRef]
- Darbari, V.C.; Waksman, G. Structural Biology of Bacterial Type IV Secretion Systems. Ann. Rev. Biochem. 2015, 84, 603–629. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, J.; Neron, B.; Abby, S.S.; Pilar Garcillan-Barcia, M.; de la Cruz, F.; Rocha, E.P.C. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 2014, 42, 5715–5727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhas, M.; Crook, D.W.; Dimopoulou, I.D.; Lunter, G.; Harding, R.M.; Ferguson, D.J.P.; Hood, D.W. Novel type IV secretion system involved in propagation of genomic islands. J. Bacteriol. 2007, 189, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Kubori, T. Type IVB secretion systems of Legionella and other Gram-negative bacteria. Front. Microbiol. 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Komano, T.; Yoshida, T.; Narahara, K.; Furuya, N. The transfer region of Incl1 plasmid R64: Similarities between R64 tra and Legionella icm/dot genes. Mol. Microbiol. 2000, 35, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Juhas, M.; Crook, D.W.; Hood, D.W. Type IV secretion systems: Tools of bacterial horizontal gene transfer and virulence. Cell. Microbiol. 2008, 10, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Franco, I.S.; Shuman, H.A.; Charpentier, X. The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell. Microbiol. 2009, 11, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Kubori, T.; Koike, M.; Bui, X.T.; Higaki, S.; Aizawa, S.-I.; Nagai, H. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc. Natl. Acad. Sci. USA 2014, 111, 11804–11809. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, D.; Chang, Y.-W.; Jeong, K.C.; Vogel, J.P.; Jensen, G.J. In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 2017, 18, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.D.; Friedman, J.R.; Jeong, K.C.; Buford, E.C.; Miller, J.L.; Vogel, J.P. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 2006, 62, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, D.; Chang, Y.; Jeong, K.; Vogel, J.; Jensen, G. Molecular architecture of the Legionella Dot/Icm type IV secretion system. bioRxiv 2018. [Google Scholar] [CrossRef]
- Nakano, N.; Kubori, T.; Kinoshita, M.; Imada, K.; Nagai, H. Crystal Structure of Legionella DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems. PLoS Pathog. 2010, 6. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Martinez, C.E.; Christie, P.J. Biological Diversity of Prokaryotic Type IV Secretion Systems. Microbiol. Mol. Biol. Rev. 2009, 73, 775–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubori, T.; Nagai, H. The Type IVB secretion system: An enigmatic chimera. Curr. Opin. Microbiol. 2016, 29, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Christie, P.J.; Gomez Valero, L.; Buchrieser, C. Biological Diversity and Evolution of Type IV Secretion Systems. Curr. Top. Microbiol. Immunol. 2017, 413, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Segal, G.; Purcell, M.; Shuman, H.A. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl. Acad. Sci. USA 1998, 95, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.Q.; Isberg, R.R. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl. Acad. Sci. USA 2004, 101, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.C.; Binder, K.A.; Cualing, P.Y.; Vogel, J.P. Reassessing the Role of DotF in the Legionella pneumophila Type IV Secretion System. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Buscher, B.A.; Conover, G.M.; Miller, J.L.; Vogel, S.A.; Meyers, S.N.; Isberg, R.R.; Vogel, J.P. The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J. Bacteriol. 2005, 187, 2927–2938. [Google Scholar] [CrossRef] [PubMed]
- Aussel, L.; Barre, F.X.; Aroyo, M.; Stasiak, A.; Stasiak, A.Z.; Sherratt, D. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 2002, 108, 195–205. [Google Scholar] [CrossRef]
- Massey, T.H.; Mercogliano, C.P.; Yates, J.; Sherratt, D.J.; Lowe, J. Double-stranded DNA translocation: Structure and mechanism of hexameric FtsK. Mol. Cell 2006, 23, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Atmakuri, K.; Cascales, E.; Christie, P.J. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol. 2004, 54, 1199–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tato, I.; Zunzunegui, S.; de la Cruz, F.; Cabezon, E. TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc. Natl. Acad. Sci. USA 2005, 102, 8156–8161. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.D.; Friedman, J.R.; Jeong, K.C.; Sutherland, M.C.; Vogel, J.P. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 2012, 85, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.-J.; Kim, J.D.; Kim, H.; Kim, C.; Bowman, J.W.; Kim, S.; Joo, K.; Lee, J.; Jin, K.S.; Kim, Y.-G.; et al. Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat. Microbiol. 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, Z.; Burstein, D.; Peeri, M.; Zusman, T.; Schwartz, K.; Shuman, H.A.; Pupko, T.; Segal, G. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc. Natl. Acad. Sci. USA 2013, 110, E707–E715. [Google Scholar] [CrossRef] [PubMed]
- Meir, A.; Chetrit, D.; Liu, L.; Roy, C.R.; Waksman, G. Legionella DotM structure reveals a role in effector recruiting to the Type 4B secretion system. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.C.; Thuy Linh, N.; Tseng, V.; Vogel, J.P. The Legionella IcmSW Complex Directly Interacts with DotL to Mediate Translocation of Adaptor-Dependent Substrates. PLoS Pathog. 2012, 8. [Google Scholar] [CrossRef] [PubMed]
- Segal, G.; Shuman, H.A. Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect. Immun. 1999, 67, 2117–2124. [Google Scholar] [PubMed]
- Edelstein, P.H.; Hu, B.F.; Higa, F.; Edelstein, M.A.C. lvgA, a novel Legionella pneumophila virulence factor. Infect. Immun. 2003, 71, 2394–2403. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, J.J.; Phan, I.Q.H.; Scheib, H.; Subramanian, S.; Edwards, T.E.; Lehman, S.S.; Piitulainen, H.; Rahman, M.S.; Rennoll-Bankert, K.E.; Staker, B.L.; et al. Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems. Mbio 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, T.; Kubori, T.; Bui, X.T.; Hyakutake, A.; Uchida, Y.; Imada, K.; Nagai, H. Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Pena, A.; Matilla, I.; Martin-Benito, J.; Valpuesta, J.M.; Carrascosa, J.L.; de la Cruz, F.; Cabezon, E.; Arechaga, I. The Hexameric Structure of a Conjugative VirB4 Protein ATPase Provides New Insights for a Functional and Phylogenetic Relationship with DNA Translocases. J. Biol. Chem. 2012, 287. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.R.; Isberg, R.R. Topology of Legionella pneumophila DotA: An inner membrane protein required for replication in macrophages. Infect. Immun. 1997, 65, 571–578. [Google Scholar] [PubMed]
- Matthews, M.; Roy, C.R. Identification and subcellular localization of the Legionella pneumophila IcmX protein: A factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect. Immun. 2000, 68, 3971–3982. [Google Scholar] [CrossRef] [PubMed]
- Beare, P.A.; Larson, C.L.; Gilk, S.D.; Heinzen, R.A. Two Systems for Targeted Gene Deletion in Coxiella burnetii. Appl. Environ. Microbiol. 2012, 78, 4580–4589. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J.A.; Yeo, H.J.; Vogel, J.P. Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol. Microbiol. 2005, 57, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Coers, J.; Monahan, C.; Roy, C.R. Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nat. Cell Biol. 1999, 1, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Dumenil, G.; Isberg, R.R. The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol. Microbiol. 2001, 40, 1113–1127. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhury, S.; Farelli, J.D.; Montminy, T.P.; Matthews, M.; Menetret, J.-F.; Dumenil, G.; Roy, C.R.; Head, J.F.; Isberg, R.R.; Akey, C.W. Structure and Function of Interacting IcmR-IcmQ Domains from a Type IVb Secretion System in Legionella pneumophila. Structure 2009, 17, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Farelli, J.D.; Gumbart, J.C.; Akey, I.V.; Hempstead, A.; Amyot, W.; Head, J.F.; McKnight, C.J.; Isberg, R.R.; Akey, C.W. IcmQ in the Type 4b Secretion System Contains an NAD(+) Binding Domain. Structure 2013, 21, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J.A.; Miller, J.L.; Yoneda, A.; Kehl-Fie, T.E.; Vogel, J.P. Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect. Immun. 2004, 72, 5983–5992. [Google Scholar] [CrossRef] [PubMed]
- Zusman, T.; Feldman, M.; Halperin, E.; Segal, G. Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect. Immun. 2004, 72, 3398–3409. [Google Scholar] [CrossRef] [PubMed]
- Morozova, I.; Qu, X.Y.; Shi, S.D.; Asamani, G.; Greenberg, J.E.; Shuman, H.A.; Russo, J.J. Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid 2004, 51, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.M.; Rupper, A.; Cardelli, J.A.; Isberg, R.R. Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect. Immun. 2000, 68, 2939–2947. [Google Scholar] [CrossRef] [PubMed]
- Gal-Mor, O.; Zusman, T.; Segal, G. Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J. Bacteriol. 2002, 184, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- Hodges, K.; Hecht, G. Interspecies communication in the gut, from bacterial delivery to host-cell response. J. Physiol. Lond. 2012, 590, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Henderson, I.R.; Navarro-Garcia, F.; Desvaux, M.; Fernandez, R.C.; Ala’Aldeen, D. Type V protein secretion pathway: The autotransporter story. Microbiol. Mol. Biol. Rev. 2004, 68, 692–744. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kendall, D.A. Sec-dependent protein export and the involvement of the molecular chaperone SecB. Cell Stress Chaperones 2000, 5, 267–275. [Google Scholar] [CrossRef]
- Van Wely, K.H.M.; Swaving, J.; Freudl, R.; Driessen, A.J.M. Translocation of proteins across the cell envelope of Gram-positive bacteria. Fems Microbiol. Rev. 2001, 25, 437–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, T.R.D.; Felisberto-Rodrigues, C.; Meir, A.; Prevost, M.S.; Redzej, A.; Trokter, M.; Waksman, G. Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol. 2015, 13, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Omori, K.; Idei, A. Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. J. Biosci. Bioeng. 2003, 95, 1–12. [Google Scholar] [CrossRef]
- Michel, G.P.F.; Voulhoux, R. Type II Secretory System (T2SS) in Gram-negative Bacteria: A Molecular Nanomachine for Secretion of Sec and Tat-Dependent Extracellular Proteins. In Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis; Wooldridge, K., Ed.; Caister Academic Press: Norfolk, UK, 2009; pp. 67–92. [Google Scholar] [CrossRef]
- Gauthier, A.; Puente, J.L.; Finlay, B.B. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect. Immun. 2003, 71, 3310–3319. [Google Scholar] [CrossRef] [PubMed]
- Pohlner, J.; Halter, R.; Beyreuther, K.; Meyer, T.F. Gene structure and extracellular secretion of neisseria-gonorrhoeae iga protease. Nature 1987, 325, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Jose, J.; Jahnig, F.; Meyer, T.F. Common structural features of iga1 protease-like outer-membrane protein autotransporters. Mol. Microbiol. 1995, 18, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Casasanta, M.A.; Yoo, C.C.; Smith, H.B.; Duncan, A.J.; Cochrane, K.; Varano, A.C.; Allen-Vercoe, E.; Slade, D.J. A chemical and biological toolbox for Type Vd secretion: Characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J. Biol. Chem. 2017, 292, 20240–20254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albenne, C.; Ieva, R. Job contenders: Roles of the beta-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol. Microbiol. 2017, 106, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.M.; Austin, L.S.; Hsu, F.; Hicks, K.G.; Hood, R.D.; Mougous, J.D. Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol. Microbiol. 2011, 82, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Coers, J.; Kagan, J.C.; Matthews, M.; Nagai, H.; Zuckman, D.M.; Roy, C.R. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol. Microbiol. 2000, 38, 719–736. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.P.; Andrade, M.O.; Alvarez-Martinez, C.E.; Arantes, G.M.; Farah, C.S.; Salinas, R.K. A Component of the Xanthomonadaceae Type IV Secretion System Combines a VirB7 Motif with a N0 Domain Found in Outer Membrane Transport Proteins. PLoS Pathog. 2011, 7. [Google Scholar] [CrossRef] [PubMed]
- Chandran, V.; Fronzes, R.; Duquerroy, S.; Cronin, N.; Navaza, J.; Waksman, G. Structure of the outer membrane complex of a type IV secretion system. Nature 2009, 462, 1011–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sexton, J.A.; Pinkner, J.S.; Roth, R.; Heuser, J.E.; Hultgren, S.J.; Vogel, J.P. The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J. Bacteriol. 2004, 186, 1658–1666. [Google Scholar] [CrossRef] [PubMed]
- Cascales, E. The type VI secretion toolkit. EMBO Rep. 2008, 9, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Basis of Classification | Subtype | Example | Characteristics |
---|---|---|---|
Plasmid incompatibility | F-subtype | IncF, IncH, IncT, IncJ | Narrow range of secretory substrates, mainly including ssDNA. |
P-subtype | IncP, IncN, IncW | Wide range of secretory substrates, including multiple virulence effectors. | |
I-subtype | IncI1 plasmid R64 | Aid in both in liquid and solid-surface mating and secrete virulence effectors. | |
Functional classification | Conjugal transfer | Self-transmissible plasmids or transposons | Mostly present in bacteria and archaea. |
Effector translocators | Pertussis toxin secretion | Transport for virulence effectors in Gram-negative bacteria. | |
DNA release/uptake systems | ComB (Helicobacter pylori) system takes DNA from outside the cell | Similar to T2SS. | |
Biochemical properties and structure | T4ASS | VirB/D4 (A. tumefaciens) | Contains pili, which assist in protein secretion. |
T4BSS | Dot/Icm (Legionella pneumophila) | Secretes a large number of effectors and transfers nucleic acids to host cells. | |
T4CSS | GI-type T4SS-like system (Streptococcus suis) | Common in Gram-positive bacteria of the genus Streptococcus | |
GI-type T4SS | ICE Hin1056 (Haemophilus influenza) |
Protein of T4BSS | Homologous Component | Protein Type | |||
---|---|---|---|---|---|
T4ASS | T2SS | T3SS | T6SS | ||
DotB | VirB11 | GspE | — | — | IM-associated ATPase a |
DotD | VirB7 | GspD | EScC | — | OM lipoprotein b |
DotC | — | — | — | — | OM lipoprotein b |
DotH/IcmK | VirB9 | — | — | — | OM protein b |
DotG/IcmE | VirB10 | — | — | — | IM protein a |
DotO/IcmB | VirB4 | — | — | — | IM-associated ATPase a |
DotCDHFG | VirB7, 9, 10 | — | — | — | Core complex |
DotI | VirB8 | — | — | — | IM protein a |
DotU/IcmH | — | — | — | TssL | IM protein a |
IcmF | — | — | — | TssM | IM protein a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, D.; Du, D.; Li, S.; Yan, W. Advances in the Assembly Model of Bacterial Type IVB Secretion Systems. Appl. Sci. 2018, 8, 2368. https://doi.org/10.3390/app8122368
Wang S, Wang D, Du D, Li S, Yan W. Advances in the Assembly Model of Bacterial Type IVB Secretion Systems. Applied Sciences. 2018; 8(12):2368. https://doi.org/10.3390/app8122368
Chicago/Turabian StyleWang, Shan, Dan Wang, Dan Du, Shanshan Li, and Wei Yan. 2018. "Advances in the Assembly Model of Bacterial Type IVB Secretion Systems" Applied Sciences 8, no. 12: 2368. https://doi.org/10.3390/app8122368
APA StyleWang, S., Wang, D., Du, D., Li, S., & Yan, W. (2018). Advances in the Assembly Model of Bacterial Type IVB Secretion Systems. Applied Sciences, 8(12), 2368. https://doi.org/10.3390/app8122368