Healable, Flexible Supercapacitors Based on Shape Memory Polymers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fabrication and Morphologies of the Composite
3.2. Capacitance Measurements of the Supercapacitors
3.3. Investigations on the Heal-Ability of the Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mather, P.T.; Luo, X.F.; Rousseau, I.A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445–471. [Google Scholar] [CrossRef]
- Rodriguez, E.D.; Luo, X.F.; Mather, P.T. Linear/network poly(epsilon-caprolactone) blends exhibiting shape memory assisted self-healing (smash). ACS Appl. Mater. Interfaces 2011, 3, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.F.; Mather, P.T. Shape memory assisted self-healing coating. ACS Macro Lett. 2013, 2, 152–156. [Google Scholar] [CrossRef]
- Mather, P.T.; Luo, X.F. Self-healing coatings utilizing a shape memory effect. In Proceedings of the 2013 ICSHM 4th International Conference on Self-Healing Materials, Ghent, Belgium, 16–20 June 2013. [Google Scholar]
- Wei, H.Q.; Yao, Y.T.; Liu, Y.J.; Leng, J.S. A dual-functional polymeric system combining shape memory with self-healing properties. Compos. Part B Eng. 2015, 83, 7–13. [Google Scholar] [CrossRef]
- Ge, J.; Cheng, G.H.; Chen, L.W. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3, 3084–3088. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.Z.; Yang, L.; Hou, L.R.; Shen, L.F.; Zhang, X.G.; Lou, X.W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 2012, 5, 7883–7887. [Google Scholar] [CrossRef]
- Lu, X.H.; Wang, G.M.; Zhai, T.; Yu, M.H.; Xie, S.L.; Ling, Y.C.; Liang, C.L.; Tong, Y.X.; Li, Y. Stabilized tin nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 2012, 12, 5376–5381. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.S.; Pei, Z.X.; Wang, Z.F.; Xue, Q.; Xie, X.M.; Zhi, C.Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, T.J.; Bhattacharjya, D.; Yu, J.S.; Kumar, A. Functionalized agarose self-healing ionogels suitable for supercapacitors. ChemsusChem 2015, 8, 3294–3303. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, B.W.; Jiang, W.C.; Yang, Y.; Leow, W.R.; Wang, H.; Chen, X.D. A mechanically and electrically self-healing supercapacitor. Adv. Mater. 2014, 26, 3638–3643. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, Y.; Zhu, M.S.; Meng, W.J.; Pei, Z.X.; Liu, C.; Hu, H.; Zhi, C.Y. Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 2015, 9, 6242–6251. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.Z.; Zhou, X.; Tang, Q.Q.; Bao, H.; Wang, G.C.; Saha, P. A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. J. Mater. Chem. A 2016, 4, 8769–8776. [Google Scholar] [CrossRef]
- Zhou, X.D.; Luo, H.S.; Zhang, Y.H.; Wang, H.Q.; Lin, Y.L.; Zhao, G.R.; Yi, G.B.; Yuan, S.J.; Zhu, Z.Q. Tunable water sensitive polymeric composites with synergistic graphene and carbon nanotubes. Mater. Lett. 2017, 199, 160–163. [Google Scholar] [CrossRef]
- Luo, H.S.; Zhoua, X.D.; Ma, Y.Y.; Yi, G.B.; Cheng, X.L.; Zhu, Y.; Zu, X.H.; Zhang, N.J.; Huang, B.H.; Yu, L.F. Shape memory-based tunable resistivity of polymer composites. Appl. Surf. Sci. 2016, 363, 59–65. [Google Scholar] [CrossRef]
- Luo, H.S.; Li, Z.W.; Yi, G.B.; Zu, X.H.; Wang, H.; Wang, Y.J.; Huang, H.L.; Hu, J.W.; Liang, Z.F.; Zhong, B.B. Electro-responsive silver nanowire-shape memory polymer composites. Mater. Lett. 2014, 134, 172–175. [Google Scholar] [CrossRef]
- Yu, M.H.; Zhang, Y.F.; Zeng, Y.X.; Balogun, M.S.; Mai, K.C.; Zhang, Z.S.; Lu, X.H.; Tong, Y.X. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 2014, 26, 4724–4729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.S.; Zhai, T.; Lu, X.H.; Yu, M.H.; Tong, Y.X.; Mai, K.C. Conductive membranes of eva filled with carbon black and carbon nanotubes for flexible energy-storage devices. J. Mater. Chem. A 2013, 1, 505–509. [Google Scholar] [CrossRef]
- Zhi, J.; Reiser, O.; Huang, F.Q. Hierarchical MnO2 spheres decorated by carbon-coated cobalt nanobeads: Low-cost and high-performance electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 8452–8459. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Y.; Yi, G.B.; Wang, J.C.; Wang, H.; Luo, H.S.; Zu, X.H. Shape-controllable and -tailorable multi-walled carbon nanotube/MnO2/shape-memory polyurethane composite film for supercapacitor. Synth. Met. 2017, 223, 67–72. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.L.; Yeung, K.W.; Choi, K.F.; Liu, Y.Q.; Liem, H.M. Effect of cationic group content on shape memory effect in segmented polyurethane cationomer. J. Appl. Polym. Sci. 2007, 103, 545–556. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Sun, X.Z.; Ma, Y.W. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Sci. China Mater. 2016, 59, 412–420. [Google Scholar] [CrossRef]
- Banerjee, D.; Das, N.S.; Chattopadhyay, K.K. Enhancement of field emission and hydrophobic properties of silicon nanowires by chemical vapor deposited carbon nanoflakes coating. Appl. Surf. Sci. 2012, 261, 223–230. [Google Scholar] [CrossRef]
- Gambou-Bosca, A.; Belanger, D. Chemical mapping and electrochemical performance of manganese dioxide/activated carbon based composite electrode for asymmetric electrochemical capacitor. J. Electrochem. Soc. 2015, 162, A5115–A5123. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Luo, H.; Zhou, X.; Wang, H.; Yao, Y.; Lin, W.; Yi, G. Healable, Flexible Supercapacitors Based on Shape Memory Polymers. Appl. Sci. 2018, 8, 1732. https://doi.org/10.3390/app8101732
Zhou H, Luo H, Zhou X, Wang H, Yao Y, Lin W, Yi G. Healable, Flexible Supercapacitors Based on Shape Memory Polymers. Applied Sciences. 2018; 8(10):1732. https://doi.org/10.3390/app8101732
Chicago/Turabian StyleZhou, Huankai, Hongsheng Luo, Xingdong Zhou, Huaquan Wang, Yangrong Yao, Wenjing Lin, and Guobin Yi. 2018. "Healable, Flexible Supercapacitors Based on Shape Memory Polymers" Applied Sciences 8, no. 10: 1732. https://doi.org/10.3390/app8101732
APA StyleZhou, H., Luo, H., Zhou, X., Wang, H., Yao, Y., Lin, W., & Yi, G. (2018). Healable, Flexible Supercapacitors Based on Shape Memory Polymers. Applied Sciences, 8(10), 1732. https://doi.org/10.3390/app8101732