# FE Model and Operational Modal Analysis of Lower Limbs

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## Featured Application

**In the field of public transport and sports, the development of specific materials able to absorb the modal frequencies identified in this paper will help decrease the amount of vibrations received by the human lower limbs. For example, shoes made of this material in running activities could prevent, or at least significantly decrease, injuries such as tibial stress syndrome. Moreover, the proposed model could be used to simulate dynamic solicitations stemming from different foot-strike patterns during running activities and, thus, to decrease stresses in the lower limb.**

## Abstract

## 1. Introduction

## 2. Method

#### 2.1. Measurement

#### 2.2. Modal Parameters

#### 2.3. FE Model

^{®}software (Version 6.12, Dassault Systèmes, Vélizy-Villacoublay, France) and features the foot (calcaneus, talus, metatarsus lumped together, tarsus lumped together), leg (tibia bone), thigh (femur bone), soft tissues, ankle, knee, hip joints and trunk (Figure 2). The femur and tibia bones were made of a central part of cortical bone and trabecular bones at the ends. The bones were held together by soft tissues, which represent muscles, skin, tendons and adipose tissue. Bones are in contact at joints; however, joint cartilage has not been modeled. The anthropometric dimensions used to create the model have been retrieved from several references (Table 2) and calculated for a virtual subject $175\phantom{\rule{0.277778em}{0ex}}\mathrm{c}\mathrm{m}$ tall. Obviously, the natural modes and frequencies are strongly dependent on these anthropometric dimensions, yet focusing on a single virtual subject showed promising results and allowed us to validate the methodology.

^{®}on a standard workstation. Modal frequencies’ sensitivity to the mesh density was investigated.

## 3. Results

#### 3.1. Modal Identification

#### 3.2. FE Model Results

#### 3.3. Model Update

## 4. Discussions

## Author Contributions

## Conflicts of Interest

## References

- Gómez-Cabello, A.; González-Agüero, A.; Morales, S.; Ara, I.; Casajús, J.A.; Vicente-Rodríguez, G. Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people. J. Sci. Med. Sport
**2014**, 17, 160–164. [Google Scholar] [CrossRef] [PubMed] - Madou, K.H.; Cronin, J.B. The Effects of Whole Body Vibration on Physical and Physiological Capability in Special Populations. Hong Kong Physiother. J.
**2008**, 26, 24–38. [Google Scholar] [CrossRef] - Matute-Llorente, Á.; González-Agüero, A.; Gómez-Cabello, A.; Vicente-Rodríguez, G.; Casajús Mallén, J.A. Effect of Whole-Body Vibration Therapy on Health-Related Physical Fitness in Children and Adolescents With Disabilities: A Systematic Review. J. Adolesc. Health
**2014**, 54, 385–396. [Google Scholar] [CrossRef] [PubMed] - Carlsöö, S. The effect of vibration on the skeleton, joints and muscles. A review of the literature. Appl. Ergon.
**1982**, 13, 251–258. [Google Scholar] [CrossRef] - Wang, Y.J.; Huang, X.L.; Yan, J.W.; Wan, Y.N.; Wang, B.X.; Tao, J.H.; Chen, B.; Li, B.Z.; Yang, G.J.; Wang, J. The association between vibration and vascular injury in rheumatic diseases: A review of the literature. Autoimmunity
**2015**, 48, 61–68. [Google Scholar] [CrossRef] [PubMed] - Jordan, M.J.; Norris, S.R.; Smith, D.J.; Herzog, W. Vibration Training: An Overview of the Area, Training Consequences, and Future Considerations. J. Strength Cond. Res.
**2005**, 19, 459. [Google Scholar] [CrossRef] [PubMed] - Gurram, R. A Study of Vibration Response Characteristics of the Human Hand-Arm System. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 1993. [Google Scholar]
- Munera, M.; Chiementin, X.; Crequy, S.; Bertucci, W. Physical risk associated with vibration at cycling. Mech. Ind.
**2014**, 15, 535–540. [Google Scholar] [CrossRef] - Fridén, J. Vibration damage to the hand: Clinical presentation, prognosis and length and severity of vibration required. J. Hand Surg.
**2001**, 26, 471–474. [Google Scholar] [CrossRef] [PubMed] - Ayari, H.; Thomas, M.; Doré, S.; Serrus, O. Evaluation of lumbar vertebra injury risk to the seated human body when exposed to vertical vibration. J. Sound Vib.
**2009**, 321, 454–470. [Google Scholar] [CrossRef] - Grassi, L.; Väänänen, S.; Ristinmaa, M.; Jurvelin, J.S.; Isaksson, H. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. J. Biomech.
**2016**, 49, 802–806. [Google Scholar] [CrossRef] [PubMed] - Adewusi, S.; Thomas, M.; Vu, V.; Li, W. Modal parameters of the human hand-arm using finite element and operational modal analysis. Mech. Ind.
**2014**, 15, 541–549. [Google Scholar] [CrossRef] - Hostens, I.; Ramon, H. Descriptive analysis of combine cabin vibrations and their effect on the human body. J. Sound Vib.
**2003**, 266, 453–464. [Google Scholar] [CrossRef] - Kitazaki, S.; Griffin, M.J. Resonance behaviour of the seated human body and effects of posture. J. Biomech.
**1998**, 31, 143–149. [Google Scholar] [CrossRef] - Hobatho, M.C.; Darmana, R.; Pastor, P.; Barrau, J.J.; Laroze, S.; Morucci, J.P. Development of a three-dimensional finite element model of a human tibia using experimental modal analysis. J. Biomech.
**1991**, 24, 371–383. [Google Scholar] [CrossRef] - Munera, M.; Chiementin, X.; Murer, S.; Bertucci, W. Model of the risk assessment of hand-arm system vibrations in cycling: Case of cobblestone road. Proc. Inst. Mech. Eng. Part P
**2015**, 229, 231–238. [Google Scholar] [CrossRef] - Thuong, O.; Griffin, M.J. The vibration discomfort of standing persons: 0.5–16 Hz fore-and-aft, lateral, and vertical vibration. J. Sound Vib.
**2011**, 330, 816–826. [Google Scholar] [CrossRef] - Wakeling, J.M.; Liphardt, A.M.; Nigg, B.M. Muscle activity reduces soft-tissue resonance at heel-strike during walking. J. Biomech.
**2003**, 36, 1761–1769. [Google Scholar] [CrossRef] - Lafortune, M.A.; Lake, M.J.; Hennig, E.M. Differential shock transmission response of the human body to impact severity and lower limb posture. J. Biomech.
**1996**, 29, 1531–1537. [Google Scholar] [CrossRef] - Peeters, B.; Van Der Auweraer, H. Polymax: A revolution in operational modal analysis. In Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 26–27 April 2005. [Google Scholar]
- Van der Auweraer, H.; Guillaume, P.; Verboven, P.; Vanlanduit, S. Application of a Fast-Stabilizing Frequency Domain Parameter Estimation Method. J. Dyn. Syst. Meas. Control
**2001**, 123, 651. [Google Scholar] [CrossRef] - Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing; Katholieke Universiteit Leuven, Faculty of Engineering, Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation: Leuven, Belgium, 1998. [Google Scholar]
- Afnor. ISO 2631-1:1997—Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- Beillas, P.; Papaioannou, G.; Tashman, S.; Yang, K. A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J. Biomech.
**2004**, 37, 1019–1030. [Google Scholar] [CrossRef] [PubMed] - De Mendonça, M.C. Estimation of height from the length of long bones in a Portuguese adult population. Am. J. Phys. Anthropol.
**2000**, 112, 39–48. [Google Scholar] [CrossRef] - Atilla, B.; Oznur, A.; Cağlar, O.; Tokgözoğlu, M.; Alpaslan, M. Osteometry of the femora in Turkish individuals: A morphometric study in 114 cadaveric femora as an anatomic basis of femoral component design. Acta Orthop. Traumatol. Turc.
**2007**, 41, 64–68. [Google Scholar] [PubMed] - Beauthier, J.; Mangin, P.; Hédouin, V. Traité de Médecine Légale. De Boeck: Bruxelles, Belgique, 2011. [Google Scholar]
- Schmidt, W.; Reyes, M.; Fischer, F.; Geesink, R.; Nolte, L.; Racanelli, J.; Reimers, N. Quantifying human knee anthropometric differences between ethnic groups and gender using shape analysis techniques. In Proceedings of the Annual Meeting American Society of Biomechanics, State College, PA, USA, 26–29 August 2009. [Google Scholar]
- NASA. Volume I: Man-Systems Integration Standards (MSIS); Chapter Anthropometry and Biomechanics; NASA: Washington, DC, USA, 1995. [Google Scholar]
- Giladi, M.; Milgrom, C.; Simkin, A.; Stein, M.; Kashtan, H.; Margulies, J.; Rand, N.; Chisin, R.; Steinberg, R.; Aharonson, Z. Stress fractures and tibial bone width. A risk factor. J. Bone Jt. Surg. Br. Vol.
**1987**, 69, 326–329. [Google Scholar] - Radzi, S.; Uesugi, M.; Baird, A.; Mishra, S.; Schuetz, M.; Schmutz, B. Assessing the bilateral geometrical differences of the tibia—Are they the same? Med. Eng. Phys.
**2014**, 36, 1618–1625. [Google Scholar] [CrossRef] [PubMed] - Ozden, H.; Balci, Y.; Demirüstü, C.; Turgut, A.; Ertugrul, M. Stature and sex estimate using foot and shoe dimensions. Forensic Sci. Int.
**2005**, 147, 181–184. [Google Scholar] [CrossRef] [PubMed] - Kanaani, J.; Mortazavi, S.B.; Khavanin, A.; Mirzai, R.; Rasulzadeh, Y.; Mansurizadeh, M. Foot Anthropometry of 18–25 Years Old Iranian Male Students. Asian J. Sci. Res.
**2010**, 3, 62–69. [Google Scholar] [CrossRef] - Pionteck, A.; Munera, M.; Chiementin, X. Modélisation 2D des Membres Inférieurs et Comportement Modale Face aux Paramètres Biomécaniques; 22ème Congrès Français de Mécanique, Lyon, France (FR); AFM, Association Française de Mécanique: Courbevoie, France, 2015. [Google Scholar]
- Cornelissen, P.; Cornelissen, M.; Van der Perre, G.; Christensen, A.B.; Ammitzbøll, F.; Dyrbye, C. Assessment of tibial stiffness by vibration testing in situ–II. Influence of soft tissues, joints and fibula. J. Biomech.
**1986**, 19, 551–561. [Google Scholar] [CrossRef] - Dumas, R.; Camomilla, V.; Bonci, T.; Cheze, L.; Cappozzo, A. Generalized mathematical representation of the soft tissue artefact. J. Biomech.
**2014**, 47, 476–481. [Google Scholar] [CrossRef] [PubMed] - Munera, M.; Bertucci, W.; Duc, S.; Chiementin, X. Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomech.
**2016**, 15, 409–428. [Google Scholar] [CrossRef] [PubMed] - Kiiski, J.; Heinonen, A.; Järvinen, T.L.; Kannus, P.; Sievänen, H. Transmission of Vertical Whole Body Vibration to the Human Body. J. Bone Miner. Res.
**2008**, 23, 1318–1325. [Google Scholar] [CrossRef] [PubMed] - Van der Perre, G.; Cornelissen, P. On the mechanical resonances of a human tibia in vitro. J. Biomech.
**1983**, 16, 549–552. [Google Scholar] [CrossRef] - Taylor, W.R.; Roland, E.; Ploeg, H.; Hertig, D.; Klabunde, R.; Warner, M.D.; Hobatho, M.C.; Rakotomanana, L.; Clift, S.E. Determination of orthotropic bone elastic constants using FEA and modal analysis. J. Biomech.
**2002**, 35, 767–773. [Google Scholar] [CrossRef] - Kumar, A.; Jaiswal, H.; Garg, T.; Patil, P.P. Free Vibration Modes Analysis of Femur Bone Fracture Using Varying Boundary Conditions based on FEA. Procedia Mater. Sci.
**2014**, 6, 1593–1599. [Google Scholar] [CrossRef] - Gupta, A.; Ming Tse, K. Finite Element Analysis on Vibration Modes of Femur Bone. In Proceedings of the International Conference on Advances in Mechanical Engineering, NCR-Delhi Region, India, December 2013. [Google Scholar]
- Tsuchikane, A.; Nakatsuchi, Y.; Nomura, A. The influence of joints and soft tissue on the natural frequency of the human tibia using the impulse response method. Proc. Inst. Mech. Eng. Part H
**1995**, 209, 149–155. [Google Scholar] [CrossRef] [PubMed] - Tseng, J.G.; Huang, B.W.; Liang, S.H.; Yen, K.T.; Tsai, Y.C.; Tseng, J.G. Normal Mode Analysis of a Human Fibula. Life Sci. J.
**2014**, 11, 711–718. [Google Scholar] - Kassab, G.; Sacks, M. Structure-Based Mechanics of Tissues and Organs; Springer: New York, NY, USA, 2016. [Google Scholar]
- Gruber, A.H.; Boyer, K.A.; Derrick, T.R.; Hamill, J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J. Sport Health Sci.
**2014**, 3, 113–121. [Google Scholar] [CrossRef] - Taiar, R.; Chiementin, X. Ergonomics and biomechanics on the impact of mats on decreasing whole body vibration. In Proceedings of the 8th International Conference on Applied Human Factors and Ergonomics, Los Angeles, CA, USA, 7–17 July 2017. [Google Scholar]

**Figure 1.**(Left) Accelerometers locations and orientations; (right) geometry of the lower limb model in the Modal Analysis software. Points 1, 2, 3, 4 are the location of the accelerometers and the number of node for the numerical model.

**Figure 3.**Mode shapes: (top) Frequency 1 ($12.8\phantom{\rule{0.277778em}{0ex}}\mathrm{Hz}$); (middle) Frequency 2 ($54.5\phantom{\rule{0.277778em}{0ex}}\mathrm{Hz}$); (bottom) Frequency 3 ($126.9\phantom{\rule{0.277778em}{0ex}}\mathrm{Hz}$).

Parameters | Ranges | Mean | STD |
---|---|---|---|

Age (years) | 22–34 | 25.90 | 2.81 |

Height ($\mathrm{m}$) | 1.68–1.84 | 1.78 | 0.04 |

Weight ($\mathrm{k}\mathrm{g}$) | 65.30–84.70 | 73.52 | 4.93 |

Body Mass Index (BMI) | 20.73–27.04 | 23.34 | 2.09 |

Hip-knee ($\mathrm{c}\mathrm{m}$) | 50.00–60.00 | 53.73 | 3.88 |

Knee-tibia ($\mathrm{c}\mathrm{m}$) | 15.00–21.07 | 17.29 | 1.09 |

Tibia-ankle ($\mathrm{c}\mathrm{m}$) | 20.00–27.93 | 22.89 | 1.52 |

Total length ($\mathrm{c}\mathrm{m}$) | 80.00–107.00 | 93.91 | 5.72 |

**Table 2.**Anthropometric table for a virtual subject $175\phantom{\rule{0.277778em}{0ex}}\mathrm{c}\mathrm{m}$ tall.

Segment | Parameters | Dimension ($\mathbf{m}\mathbf{m}$) |
---|---|---|

Thigh | Femoral length [25] | 482.0 |

Femoral head diameter [26] | 46.1 | |

Neck width of the femoral head [26] | 24.1 | |

Femoral diaphysiswidth [27] | 30.0 | |

Femoral condyles width [28] | 81.4 | |

Thigh diameter [29] | 191.0 | |

Knee radius [29] | 125.4 | |

Leg | Tibia length [28] | 383.4 |

Tibia width ($13.7\phantom{\rule{0.277778em}{0ex}}\mathrm{c}\mathrm{m}$ above ankle) [30] | 28.2 | |

Tibia proximal epiphysis width [31] | 60.1 | |

Tibia distal epiphysis width [31] | 43.6 | |

Calf radius [29] | 119.7 | |

Foot | Foot length [32] | 260.0 |

Foot height [33] | 81.2 | |

Ankle height [33] | 127.9 |

Body Zones | Initial | Updated | ||
---|---|---|---|---|

E $\left(\right)open="("\; close=")">\mathbf{M}\mathbf{Pa}$ | D $\left(\right)open="("\; close=")">{10}^{3}\phantom{\rule{0.277778em}{0ex}}\mathbf{k}\mathbf{g}/{\mathbf{m}}^{3}$ | E $\left(\right)open="("\; close=")">\mathbf{M}\mathbf{Pa}$ | D $\left(\right)open="("\; close=")">{10}^{3}\phantom{\rule{0.277778em}{0ex}}\mathbf{k}\mathbf{g}/{\mathbf{m}}^{3}$ | |

Trunk | 600 | 1.00 | 600 | 1.30 |

Cortical | 17,500 | 2.10 | 17,500 | 2.10 |

Trabecular | 450 | 1.80 | 450 | 1.80 |

Soft tissues | 345 | 1.20 | 615 | 1.11 |

**Table 4.**Identification results: repeatability (Protocol 1). m: mean, std: standart deviation, CV: coefficient of variation.

Mode | Score | Frequency ($\mathbf{Hz}$) m ± std (CV%) | Damping % m ± std (CV%) |
---|---|---|---|

1 | 100% | 36.82 ± 0.98 (2.7) | 10.03 ± 1.73 (17.2) |

2 | 60% | 42.26 ± 2.02 (4.8) | 7.5 4± 3.29 (43.7) |

3 | 100% | 49.48 ± 1.23 (2.5) | 7.04 ± 1.74 (24.7) |

4 | 90% | 62.51 ± 2.68 (4.3) | 7.78 ± 2.19 (28.2) |

5 | 30% | 71.30 ± 1.26 (1.8) | 4.81 ± 2.40 (49.9) |

6 | 80% | 82.14 ± 2.60 (3.2) | 7.82 ± 1.26 (16.2) |

7 | 100% | 98.26 ± 3.16 (3.2) | 7.53 ± 2.33 (31.0) |

8 | 90% | 122.89 ± 1.07 (0.9) | 2.58 ± 0.76 (29.3) |

Mode | Frequency ($\mathbf{Hz}$) m ± std (CV%) | Damping % m ± std (CV%) |
---|---|---|

1 | 35.66 ± 1.00 (2.8) | 1.39 ± 0.97 (69.8) |

2 | 43.24 ± 2.09 (4.8) | 7.28 ± 2.36 (32.4) |

3 | 52.54 ± 2.05 (3.9) | 6.41 ± 2.35 (36.8) |

4 | 61.99 ± 1.67 (2.7) | 5.16 ± 2.28 (44.2) |

5 | 70.40 ± 1.60 (2.3) | 4.73 ± 1.57 (33.1) |

6 | 84.06 ± 3.71 (4.4) | 4.46 ± 1.34 (30.1) |

7 | 100.38 ± 3.71 (3.7) | 3.52 ± 2.12 (60.1) |

8 | 118.94 ± 2.70 (2.3) | 1.60 ± 0.76 (47.7) |

**Table 6.**Comparison between the confidence interval and the frequencies calculated by the numerical model.

Frequencies | Mode 3 | Mode 8 |
---|---|---|

Mean experimental frequencies ($\mathrm{Hz}$) | 52.54 | 118.94 |

Confidence interval ($\mathrm{Hz}$) | 51.17–53.91 | 117.13–120.75 |

Initial model ($\mathrm{Hz}$) | 54.55 | 126.85 |

Updated model ($\mathrm{Hz}$) | 51.17 | 120.70 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pionteck, A.; Chiementin, X.; Munera, M.; Murer, S.; Chadefaux, D.; Rao, G.
FE Model and Operational Modal Analysis of Lower Limbs. *Appl. Sci.* **2017**, *7*, 853.
https://doi.org/10.3390/app7080853

**AMA Style**

Pionteck A, Chiementin X, Munera M, Murer S, Chadefaux D, Rao G.
FE Model and Operational Modal Analysis of Lower Limbs. *Applied Sciences*. 2017; 7(8):853.
https://doi.org/10.3390/app7080853

**Chicago/Turabian Style**

Pionteck, Aymeric, Xavier Chiementin, Marcela Munera, Sébastien Murer, Delphine Chadefaux, and Guillaume Rao.
2017. "FE Model and Operational Modal Analysis of Lower Limbs" *Applied Sciences* 7, no. 8: 853.
https://doi.org/10.3390/app7080853