Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Constituent Materials
2.2. Mix Design Methodology
2.3. Preparation of Samples and Test Methods
3. Numerical Modeling and Characterization
3.1. Numerical Modeling with a Dense Packing Algorithm
3.1.1. Virtual Specimens with Different Gradings
3.1.2. Numerical Simulations
3.2. Probabilistic Characterization Method and CT Measurement
3.2.1. Lineal-Path Function
3.2.2. X-ray CT Measurement
4. Evaluation of the Properties of Concretes with Different Aggregate Gradings
4.1. Mechanical Property Evaluation
4.2. Thermal Property Evaluation
4.3. Verification of Specimens with X-ray CT and the Probabilistic Method
5. Conclusions
- The obtained results show the effect of gradings and the packing algorithm on the material properties of lightweight aggregate concrete.
- All the specimens produced in this study show a higher performance than conventional lightweight concrete based on efficiency factors, while the specimen densities are lower than those of conventional concretes.
- When the volume content of the lightweight aggregates is the same, the lightweight concrete specimen with a larger proportion of finer aggregates shows a larger elastic modulus and compressive strength, while the thermal conductivity of the specimen is larger.
- Lightweight concrete with lower thermal conductivity, while minimizing the loss of mechanical properties, can be produced by using an appropriate grading, although the density of the specimen strongly affects the material properties and becomes larger when the proportion of finer aggregates increases.
- The X-ray CT imaging and the lineal-path function shows potential for examining the relative aggregate size in the concrete specimen.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 4–48. [Google Scholar]
- Neville, A.M. Properties of Concrete; Wiley: Hoboken, NJ, USA, 2012; pp. 10–24. [Google Scholar]
- Korat, L.; Ducman, V.; Legat, A.; Mirtic, B. Characterisation of the pore-forming process in lightweight aggregate based on silica sludge by means of X-ray micro-tomography (micro-CT) and mercury intrusion porosimetry (MIP). Cem. Concr. Res. 2013, 39, 6997–7005. [Google Scholar] [CrossRef]
- Sales, A.; Souza, F.R.; Santos, W.N.; Zimer, A.M.; Almeida, F.C.R. Lightweight composite concrete produced with water treatment sludge and sawdust: Thermal properties and potential application. Constr. Build. Mater. 2010, 24, 2446–2453. [Google Scholar] [CrossRef]
- Chabannes, M.; Benezet, J.-C.; Clerc, L.; Garcia-Diaz, E. Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application. Constr. Build. Mater. 2014, 70, 428–438. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.-Y.; Monteiro, P.J.M.; Zhang, M.-H. Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Constr. Build. Mater. 2015, 87, 100–112. [Google Scholar] [CrossRef]
- Colangelo, F.; Messina, F.; Cioffi, R. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J. Hazard. Mater. 2015, 299, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Lihua, Z.; Yunsheng, Z.; Chuanbei, L.; Laibao, L.; Kaijing, T. Study on microstructure and bond strength of interfacial transition zone between cement paste and high-performance lightweight aggregates prepared from ferrochromium slag. Constr. Build. Mater. 2017, 142, 31–41. [Google Scholar]
- Bogas, J.A.; Cunha, D. Non-structural lightweight concrete with volcanic scoria aggregates for lightweight fill in building’s floors. Constr. Build. Mater. 2017, 135, 151–163. [Google Scholar] [CrossRef]
- Colangelo, F.; Cioffi, R.; Liguori, B.; Iucolano, F. Recycled polyolefins waste as aggregates for lightweight concrete. Compos. Part B 2016, 106, 234–241. [Google Scholar] [CrossRef]
- Guneyisi, E.; Gesoglu, M.; Ali Azez, O.; Oz, H.O. Effect of nano silica on the workability of self-compacting concretes having untreated and surface treated lightweight aggregates. Constr. Build. Mater. 2016, 115, 371–380. [Google Scholar] [CrossRef]
- Youm, K.-S.; Moon, J.; Cho, J.-Y.; Kim, J.J. Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Constr. Build. Mater. 2016, 114, 517–527. [Google Scholar] [CrossRef]
- European Union. EuroLightCon LWAC material properties state-of-the-art. In Economic Design and Construction with Light Weight Aggregate Concrete; Brite-EuRam III; European Union: Brussels, Belgium, 1998; pp. 4–178. [Google Scholar]
- Wang, H.Y.; Tsai, K.C. Engineering properties of lightweight aggregate concrete made from dredged silt. Cem. Concr. Compos. 2006, 28, 481–485. [Google Scholar] [CrossRef]
- Schackow, A.; Effting, C.; Folgueras, M.V.; Guths, S.; Mendes, G.A. Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater. 2014, 57, 190–197. [Google Scholar] [CrossRef]
- Yu, R.; van Onna, D.V.; Spiesz, P.; Yu, Q.L.; Brouwers, H.J.H. Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass. Constr. Build. Mater. 2016, 112, 690–701. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2005; pp. 13–37. [Google Scholar]
- Liu, X.; Chia, K.S.; Zhang, M.-H. Development of lightweight concrete with high resistance to water and chloride-ion penetration. Cem. Concr. Compos. 2010, 32, 757–766. [Google Scholar] [CrossRef]
- Andreasen, A.H.M.; Andersen, J. Über die Beziehungen zwischen Kornabstufungen und Zwischenraum in Produkten aus losen Körnern. Kolloid Z. 1930, 50, 217–228. (In German) [Google Scholar] [CrossRef]
- Funk, J.E.; Dinger, D.R. Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 123–129. [Google Scholar]
- Brouwers, H.J.H.; Radix, H.J. Self compacting concrete: Theoretical and experimental study. Cem. Concr. Res. 2005, 35, 2116–2136. [Google Scholar] [CrossRef]
- Huesken, G.; Brouwers, H.J.H. A new mix design concept for earth-moist concrete: A theoretical and experimental study. Cem. Concr. Res. 2008, 35, 1246–1259. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y. Simulation of random packing of spherical particles with different size distributions. Appl. Phys. A Mater. 2008, 92, 612–626. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Fung, W.W.S. Packing density measurement and modelling of fine aggregate and mortar. Cem. Concr. Compos. 2009, 31, 349–357. [Google Scholar] [CrossRef]
- Sobolev, K.; Amirjanov, A. Application of genetic algorithm for modeling of dense packing of concrete aggregates. Constr. Build. Mater. 2010, 24, 1449–1455. [Google Scholar] [CrossRef]
- Abd Elrahman, M.; Hillemeier, B. Combined effect of fine fly ash and packing density on the properties of high performance concrete: An experimental approach. Constr. Build. Mater. 2014, 58, 225–233. [Google Scholar] [CrossRef]
- Fennis, S.A.A.M.; Walraven, J.C.; den Uijl, J.A. The use of particle packing models to design ecological concrete. Heron 2009, 54, 185–204. [Google Scholar]
- Hunger, M. An Integral Design Concept for Ecological Self-Compacting Concrete; CIP-Data Library Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2010; pp. 58–69. [Google Scholar]
- Brouwers, H.J.H. Particle-size distribution and packing fraction of geometric random packings. Phys. Rev. E 2006, 74, 031309. [Google Scholar] [CrossRef] [PubMed]
- Huesken, G.; Brouwers, H.J.H. On the early-age behavior of zero-slump concrete. Cem. Concr. Res. 2012, 42, 501–510. [Google Scholar] [CrossRef]
- Yu, Q.L.; Spiesz, P.; Brouwers, H.J.H. Ultra-lightweight concrete: Conceptual design and performance evaluation. Cem. Concr. Compos. 2015, 61, 18–28. [Google Scholar] [CrossRef]
- International Organization for Standardization. Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disk) Method; 22007-2:2015; DIN EN 1990; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- European Committee for Standardization. Testing Hardened Concrete—Part 4: Compressive Strength—Specification for Testing Machines; EN 12390-4:2000; CEN: Brussels, Belgium, 2000. [Google Scholar]
- Jia, T.; Zhang, Y.; Chen, J.K. Simulation of granular packing of particles with different size distributions. Comput. Mater. Sci. 2012, 51, 172–180. [Google Scholar] [CrossRef]
- Sobolev, K.; Amirjanov, A. The development of a simulation model of the dense packing of large particulate assemblies. Powder Technol. 2004, 141, 155–160. [Google Scholar] [CrossRef]
- Abaqus, version v2016; Dassault Systemes: Velizy-Villacoublay Cedex, France, 2016.
- Ramamurthy, K.; Nambiar, E.K.K.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Jankowiak, T.; Lodygowski, T. Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ. Eng. 2005, 6, 53–69. [Google Scholar]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley and Sons: Hoboken, NJ, USA, 2006; pp. 127–145. [Google Scholar]
- Jeffers, A.E.; Beat, P.A. Generalized shell heat transfer element for modeling the thermal response of non-uniformly heated structures. Finite Elem. Anal. Des. 2014, 83, 58–67. [Google Scholar] [CrossRef]
- Kmiecik, P.; Kaminski, M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Arch. Civ. Mech. Eng. 2011, 11, 623–636. [Google Scholar] [CrossRef]
- Lu, B.; Torquato, S. Lineal-path function for random heterogeneous materials. Phys. Rev. A 1992, 45, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Torquato, S. Random Heterogeneous Materials; Springer Nature: New York, NY, USA, 2002; pp. 327–335. [Google Scholar]
- Chung, S.-Y.; Abd Elrahman, M.; Stephan, D.; Kamm, P.H. Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography. Constr. Build. Mater. 2016, 118, 204–215. [Google Scholar] [CrossRef]
- Moreno, F.G.; Fromme, M.; Banhart, J. Real-time X-ray radioscopy on metallic foams using a compact micro-focus source. Adv. Eng. Mater. 2004, 6, 416–420. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Cui, F.; Wang, X.L.; Peng, S.; Vogel, C. A Parallel Algorithm for Quasi Euclidean Distance Transform. J. Image Graph. 2004, 6, 1–6. [Google Scholar]
- Hueckler, A. Trag-Und Verformungsverhalten von Biegebeanspruchten Bauteilen aus Infraleichtbeton (ILC); Sierke Verlag: Göttingen, Germany, 2016; pp. 112–114. (In Germany) [Google Scholar]
Material | CaO | SiO | AlO | FeO | MgO | NaO | KO | SO | Cl | Specific Density | Surface Area (cm/g) |
---|---|---|---|---|---|---|---|---|---|---|---|
Cement [wt %] | 54.8 | 23.7 | 8.8 | 1.46 | 5.21 | 0.3 | 0.59 | 2.4 | - | 3.05 | 3860 |
Silica fume [wt %] | 0.2 | 98.4 | 0.2 | 0.01 | 0.1 | 0.15 | 0.2 | 0.1 | 0.01 | 2.2 | 200,000 |
Material | Bulk Density | Specific Density | Crushing Resistance * | Water Absorption ** [wt %] | |
---|---|---|---|---|---|
(kg/m) | (MPa) | 60 min | 24 h | ||
Liaver | 250 | 450 | 2.6 | 12.08 | 21.8 |
0.5–1.0 | |||||
Liaver | 220 | 330 | 2.4 | 13.96 | 26.5 |
1.0–2.0 | |||||
Liaver | 190 | 310 | 2.2 | 11.5 | 27.1 |
2.0–4.0 |
Sample | q | Proportion of Liaver Volume | ||
---|---|---|---|---|
Liaver 0.5–1.0 mm | Liaver 1.0–2.0 mm | Liaver 2.0–4.0 mm | ||
LW 23 | 0.23 | 0.2818 | 0.3305 | 0.3877 |
LW 25 | 0.25 | 0.2565 | 0.3269 | 0.4165 |
LW 30 | 0.30 | 0.4210 | 0.2664 | 0.3126 |
LW 45 | 0.45 | 0.3489 | 0.2751 | 0.3760 |
Sample | Cement | Silica Fume | SP* | ST** | Water | LWA (kg/m) | ||
---|---|---|---|---|---|---|---|---|
(kg/m) | (kg/m) | (kg/m) | (kg/m) | (kg/m) | 2.0–4.0 mm | 1.0–2.0 mm | 0.5–1.0 mm | |
LW 23 | 216 | 24 | 4.32 | 0.72 | 182.4 | 75.4 | 80.7 | 74.36 |
LW 25 | 216 | 24 | 4.32 | 0.72 | 182.4 | 67.04 | 80.8 | 75.48 |
LW 30 | 216 | 24 | 4.32 | 0.72 | 182.4 | 80.1 | 80 | 68.7 |
LW 45 | 216 | 24 | 4.32 | 0.72 | 182.4 | 82.4 | 79.46 | 65.9 |
Sample | Density of Fresh Concrete * (kg/m) | Flow Diameter ** (mm) |
---|---|---|
LW 23 | 644–655 | 512 |
LW 25 | 642–646 | 520 |
LW 30 | 654–670 | 495 |
LW 45 | 640–660 | 508 |
Types | Matrix (Mortar) | Liaver 4 mm | Liaver 2 mm | Liaver 1 mm | Liaver 0.5 mm |
---|---|---|---|---|---|
Thermal Conductivity (W/m/K) | 0.31 | 0.070 | 0.073 | 0.075 | 0.080 |
Density (kg/m) | 1047 | 310 | 340 | 350 | 450 |
Specific Heat (J/kg/K) | 960 | 1200 | 1150 | 1140 | 1100 |
Elastic Modulus (GPa) | 8.15 | 0.76 | 0.79 | 0.80 | 0.84 |
Poisson’s Ratio | 0.3 | 0.37 | 0.37 | 0.36 | 0.36 |
Yield Strength (MPa) | 40.78 | 1.2 | 2.2 | 2.4 | 2.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.-Y.; Abd Elrahman, M.; Stephan, D. Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete. Appl. Sci. 2017, 7, 585. https://doi.org/10.3390/app7060585
Chung S-Y, Abd Elrahman M, Stephan D. Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete. Applied Sciences. 2017; 7(6):585. https://doi.org/10.3390/app7060585
Chicago/Turabian StyleChung, Sang-Yeop, Mohamed Abd Elrahman, and Dietmar Stephan. 2017. "Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete" Applied Sciences 7, no. 6: 585. https://doi.org/10.3390/app7060585
APA StyleChung, S.-Y., Abd Elrahman, M., & Stephan, D. (2017). Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete. Applied Sciences, 7(6), 585. https://doi.org/10.3390/app7060585