The Role of the Cerebellum in Unconscious and Conscious Processing of Emotions: A Review
Abstract
:1. Introduction
- Emotional processing implies the existence of unconscious and conscious components.
- The cerebellum is connected to cerebral structures that are involved in unconscious and conscious emotional processing.
- In the unconscious component of emotions, cerebellar involvement is supported by its influence in modulating autonomic reactions, the automatic component of emotional learning, and implicit processing of facial expressions.
- In the conscious component of emotions, the involvement of the cerebellum is supported by its influence on the emotional content of fear conditioning, conscious processing of emotional facial expression, the ability to recognize negative emotions, and self-perception of negative emotions.
- In the emotional domain, measuring cerebellar function with regards to state estimation and its ability to process and predict sequential events allows us to compare internal and external events on the unconscious and conscious levels.
2. Emotional Unconscious and Conscious Circuits
3. Cerebellum and Emotional Processing
3.1. Cerebellar Involvement in the Unconscious Component of Emotions
3.2. Cerebellar Involvement in the Conscious Component of Emotions
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Prescott, J.W. Early somatosensory deprivation as ontogenic process in the abnormal development of the brain and behavior. In Medical Primatology 1970; Goldsmith, J., Moor-Jankowski, Eds.; Karger: Basel, Switzerland, 1971; ISBN 13: 9789057022234. [Google Scholar]
- Heath, R.G. Modulation of emotion with a brain pacemaker: Treatment for intractable psychiatric illness. J. Nerv. Ment. Dis. 1977, 165, 300–317. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.G.; Dempesy, C.W.; Fontana, C.J.; Myers, W.A. Cerebellar stimulation: Effects on septal region, hippocampus, and amygdala of cats and rats. Biol. Psychiatry 1978, 13, 501–529. [Google Scholar] [PubMed]
- Schmahmann, J.D.; Sherman, J. The cerebellar cognitive affective syndrome. Brain 1998, 121, 561–579. [Google Scholar] [CrossRef] [PubMed]
- Leiner, H.C.; Leiner, A.L.; Dow, R.S. Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behav. Neurosci. 1989, 103, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Exner, C.; Weniger, G.; Irle, E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology 2004, 63, 2132–2135. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013, 80, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.A.; Erb, M.; Gharabaghi, A.; Grodd, W.; Tatagiba, M.S.; Pavlova, M.A. Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. Neuroimage 2012, 59, 2824–2830. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.A.; Erb, M.; Grodd, W.; Pavlova, M.A. Structural loop between the cerebellum and the superior temporal sulcus: Evidence from diffusion tensor imaging. Cereb. Cortex 2014, 24, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Baumann, O.; Borra, R.J.; Bower, J.M.; Cullen, K.E.; Habas, C.; Ivry, R.B.; Leggio, M.; Mattingley, J.B.; Molinari, M.; Moulton, E.A.; et al. Consensus paper: The role of the cerebellum in perceptual processes. Cerebellum 2015, 14, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Ronconi, L.; Casartelli, L.; Carna, S.; Molteni, M.; Arrigoni, F.; Borgatti, R. When one is enough: Impaired multisensory integration in cerebellar agenesis. Cereb. Cortex 2017, 27, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Taig, E.; Küper, M.; Theysohn, N.; Timmann, D.; Donchin, O. Deficient use of visual information in estimating hand position in cerebellar patients. J. Neurosci. 2012, 32, 16274–16284. [Google Scholar] [CrossRef] [PubMed]
- Casartelli, L.; Federici, A.; Cesareo, A.; Biffi, E.; Valtorta, G.; Molteni, M.; Ronconi, L.; Borgatti, R. The role of the cerebellum in high stages of motor planning hierarchy. J. Neurophysiol. 2017, 117, 1474–1482. [Google Scholar] [CrossRef] [PubMed]
- Annoni, J.M.; Ptak, R.; Caldara-Schnetzer, A.S.; Khateb, A.; Pollermann, B.Z. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann. Neurol. 2003, 53, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Schutter, D.J.; van Honk, J. The cerebellum on the rise in human emotion. Cerebellum 2005, 4, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Weilburg, J.B.; Sherman, J.C. The neuropsychiatry of the cerebellum—Insights from the clinic. Cerebellum 2007, 6, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Placentino, A.; Carletti, F.; Landi, P.; Allen, P.; Surguladze, S.; Benedetti, F.; Abbamonte, M.; Gasparotti, R.; Barale, F.; et al. Functional atlas of emotional faces processing: A voxel based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. 2009, 34, 418–432. [Google Scholar] [PubMed]
- Stoodley, C.J.; Schmahmann, J.D. Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage 2009, 44, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; Schmahmann, J.D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010, 46, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Van Overwalle, F.; Baetens, K.; Mariën, P.; Vandekerckhove, M. Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. Neuroimage 2014, 86, 554–572. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Hoppenbrouwers, S.S.; Fitzgerald, P.B.; Chen, R.; Daskalakis, Z.J. The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: A review. Brain Res. Rev. 2008, 59, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Aldinger, K.A.; Ashwood, P.; Bauman, M.L.; Blaha, C.D.; Blatt, G.J.; Chauhan, A.; Chauhan, V.; Dager, S.R.; Dickson, P.E.; et al. Consensus paper: Pathological role of the cerebellum in autism. Cerebellum 2012, 11, 777–807. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, R. The cerebellum and neuropsychiatric disorders. Psychiatry Res. 2012, 198, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Çavdar, S.; Şan, T.; Aker, R.; Şehirli, U.; Onat, F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J. Anat. 2001, 198, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Middleton, F.A.; Strick, P.L. Cerebellar projections to the prefrontal cortex of the primate. J. Neurosci. 2001, 21, 700–712. [Google Scholar] [PubMed]
- Habas, C.; Kamdar, N.; Nguyen, D.; Prater, K.; Beckmann, C.F.; Menon, V.; Greicius, M.D. Distinct cerebellar contributions to intrinsic connectivity networks. J. Neurosci. 2009, 29, 8586–8594. [Google Scholar] [CrossRef] [PubMed]
- Damasio, A.R. Descartes’ Error: Emotion, Reason, and the Human Brain; G.P. Putnam’s Press: New York, NY, USA, 1994; ISBN 0399138943. [Google Scholar]
- Morris, J.S.; Ohman, A.; Dolan, J.R. Conscious and unconscious emotional learning in the human amygdala. Nature 1998, 393, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Whalen, P.J.; Rauch, S.L.; Etcoff, N.L.; McInerney, S.C.; Lee, M.B.; Jenike, M.A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 1998, 18, 411–418. [Google Scholar] [PubMed]
- Driver, J.; Vuilleumier, P.; Eimer, M.; Rees, G. Functional magnetic resonance imaging and evoked potential correlates of conscious and unconscious vision in parietal extinction patients. Neuroimage 2001, 14, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Lane, R. Neural substrates of implicit and explicit emotional processes: A unifying framework for psychosomatic medicine. Psychosom. Med. 2008, 70, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Molinari, M.; Leggio, M.G.; Solida, A.; Ciorra, R.; Misciagna, S.; Silveri, M.C.; Petrosini, L. Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain 1997, 120, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Leggio, M.G.; Neri, P.; Graziano, A.; Mandolesi, L.; Molinari, M.; Petrosini, L. Cerebellar contribution to spatial event processing: Characterization of procedural learning. Exp. Brain Res. 1999, 127, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Menghini, D.; Hagberg, G.E.; Caltagirone, C.; Petrosini, L.; Vicari, S. Implicit learning deficits in dyslexic adults: An fMRI study. Neuroimage 2006, 33, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Scheuerecker, J.; Frodl, T.; Koutsouleris, N.; Zetzsche, T.; Wiesmann, M.; Kleemann, A.M.; Brückmann, H.; Schmitt, G.; Möller, H.J.; Meisenzahl, E.M. Cerebral differences in explicit and implicit emotional processing—An fMRI study. Neuropsychobiology 2007, 56, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Schutter, D.J.; Enter, D.; Hoppenbrouwers, S.S. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J. Psychiatry Neurosci. 2009, 34, 60–65. [Google Scholar] [PubMed]
- Kihlstrom, J.F.; Mulvaney, S.; Tobias, B.A.; Tobis, I.P. The emotional unconscious. In Cognition and Emotion; Eich, E., Kihlstron, J., Bower, G., Forgas, J.P., Niedenthal, P.M., Eds.; Oxford University Press: New York, NY, USA, 2000; pp. 30–86. ISBN 9780195113341. [Google Scholar]
- Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; et al. Consensus Paper: Cerebellum and Emotion. Cerebellum 2017, 16, 552–576. [Google Scholar] [CrossRef] [PubMed]
- Shobe, E.R. Independent and collaborative contributions of the cerebral hemispheres to emotional processing. Front. Hum. Neurosci. 2014, 8, 230. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Lane, R.D. The neural basis of one’s own conscious and unconscious emotional states. Neurosci. Biobehav. Rev. 2015, 57, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Lane, R. Neural correlates of conscious emotional experience. In Cognitive Neuroscience of Emotion; Lane, R., Nadel, L., Ahern, G., Allen, J., Kaszniak, A., Rapcsak, S., Schwartz, G., Eds.; Oxford University Press: New York, NY, USA, 2000; pp. 345–370. ISBN 0195155920, 9780195155921. [Google Scholar]
- Gainotti, G. Unconscious processing of emotions and the right hemisphere. Neuropsychologia 2012, 50, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H. Subcortical face processing. Nat. Rev. Neurosci. 2005, 6, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Liddell, B.J.; Brown, K.J.; Kemp, A.H.; Barton, M.J.; Das, P.; Peduto, A.; Gordon, E.; Williams, L.M. A direct brainstem-amygdala-cortical ‘alarm’ system for subliminal signals of fear. Neuroimage 2005, 24, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Tamietto, M.; de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 2010, 11, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Shipp, S. The functional logic of cortico-pulvinar connections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1605–1624. [Google Scholar] [CrossRef] [PubMed]
- Mufson, E.J.; Mesulam, M.M. Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J. Comp. Neurol. 1984, 227, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Behrens, T.E.J.; Johansen-Berg, H.; Woolrich, M.W.; Smith, S.M.; Wheeler-Kingshott, C.A.; Boulby, P.A.; Barker, G.J.; Sillery, E.L.; Sheehan, K.; Ciccarelli, O.; et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 2003, 6, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Romanski, L.M.; Giguere, M.; Bates, J.F.; Goldman-Rakic, P.S. Topo-graphic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 1998, 37, 313–332. [Google Scholar] [CrossRef]
- Eidelberg, D.; Galaburda, A.M. Symmetry and asymmetry in the human posterior thalamus. I. Cytoarchitectonic analysis in normal persons. Arch. Neurol. 1982, 39, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, M.P.; Mandl, R.C.; Kahn, R.S.; Pol, H.; Hilleke, E. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 2009, 30, 3127–3141. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [PubMed]
- Grimm, S.; Boesiger, P.; Beck, J.; Schuepbach, D.; Bermpohl, F.; Walter, M.; Ernst, J.; Hell, D.; Boeker, H.; Northoff, G. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 2008, 34, 843–932. [Google Scholar] [CrossRef] [PubMed]
- Sreenivas, S.; Boehm, S.G.; Linden, D.E.J. Emotional faces and the default mode network. Neurosci. Lett. 2012, 506, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. The role of the cerebellum on affect and psychosis. J. Neurolinguist. 2000, 13, 189–214. [Google Scholar] [CrossRef]
- Haines, D.E.; Dietrichs, E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri scieureus). J. Comp. Neurol. 1984, 229, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Aas, J.E.; Brodal, P. Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: An experimental study in the cat. J. Comp. Neurol. 1988, 268, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Haines, D.E.; Dietrichs, E.; Mihailoff, G.A.; McDonald, E.F. The cerebellar-hypothalamic axis: Basic circuits and clinical observations. Int. Rev. Neurobiol. 1997, 41, 83–107. [Google Scholar] [CrossRef] [PubMed]
- Snider, R.S.; Maiti, A. Cerebellar contributions to the Papez circuit. J. Neurosci. Res. 1976, 2, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Vilensky, J.A.; Van Hoesen, G.W. Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Res. 1981, 205, 391–395. [Google Scholar] [CrossRef]
- Brodal, P.; Bjaali, J.G.; Aas, J.E. Organization of cingulo-ponto-cerebellar connections in the cat. Anat. Embryol. 1991, 184, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Hum. Brain Mapp. 1996, 4, 174–198. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Pandya, D.N. The cerebrocerebellar system. Int. Rev. Neurobiol. 1997, 4, 31–60. [Google Scholar] [CrossRef]
- Allen, G.; McColl, R.; Barnard, H.; Ringe, W.K.; Fleckenstein, J.; Cullum, C.M. Magnetic resonance imaging of cerebellar prefrontal and cerebellar-parietal functional connectivity. Neuroimage 2005, 28, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.K.; Shehzad, Z.; Margulies, D.S.; Kelly, A.M.C.; Uddin, L.Q.; Gotimer, K.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Functional connectivity of the human amygdala using resting-state fMRI. Neuroimage 2009, 45, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Qin, W.; Liu, Y.; Zhang, Y.; Jiang, T.; Yu, C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage 2012, 61, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Adamaszek, M.; D’Agata, F.; Kirkby, K.C.; Trenner, M.U.; Sehm, B.; Steele, C.J.; Berneiser, J.; Strecker, K. Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum 2014, 13, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Clausi, S.; Aloise, F.; Contento, M.P.; Pizzamiglio, L.; Molinari, M.; Leggio, M. Un Holter per il monitoraggio del tono dell’umore giornaliero: Studio preliminare in soggetti con patologia cerebellare. In Proceedings of the Congresso Nazionale delle Sezioni dell’Associazione Italiana di Psicologia, Chieti, Italy, 20–22 September 2012; p. 121, ISBN 987-8-89-741266-3. [Google Scholar]
- Clausi, S.; Coricelli, G.; Pisotta, I.; Pavone, E.F.; Lauriola, M.; Molinari, M.; Leggio, M. Cerebellar damage impairs the self-rating of regret feeling in a gambling task. Front. Behav. Neurosci. 2015, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- D’Agata, F.; Caroppo, P.; Baudino, B.; Caglio, M.; Croce, M.; Bergui, M.; Tamietto, M.; Mortara, P.; Orsi, L. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum 2011, 10, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Garrard, P.; Martin, N.H.; Giunti, P.; Cipolotti, L. Cognitive and social cognitive functioning in spinocerebellar ataxia: A preliminary characterization. J. Neurol. 2008, 255, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Maschke, M.; Drepper, J.; Kindsvater, K.; Kolb, F.P.; Diener, H.C.; Timmann, D. Fear conditioned potentiation of the acoustic blink reflex in patients with cerebellar lesions. J. Neurol. Neurosurg. Psychiatry 2000, 68, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Maschke, M.; Schugens, M.; Kindsvater, K.; Kolb, F.P.; Diener, H.C.; Timmann, D. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J. Neurol. Neurosurg. Psychiatry 2002, 72, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Parente, A.; Manfredi, V.; Tarallo, A.; Salsano, E.; Erbetta, A.; Pareyson, D.; Giovagnoli, A.R. Selective theory of mind impairment and cerebellar atrophy: A case report. J. Neurol. 2013, 260, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
- Sokolovsky, N.; Cook, A.; Hunt, H.; Giunti, P.; Cipolotti, L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav. Neurol. 2010, 23, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Corfield, D.R.; Chandler, M.P.; Mathias, C.J.; Dolan, R.J. Cerebral correlates of autonomic cardiovascular arousal: A functional neuroimaging investigation in humans. J. Physiol. 2000, 523, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, J.; Thürling, M.; Gizewski, E.R.; Forsting, M.; Timmann, D.; Elsenbruch, S. Cerebellar contributions to different phases of visceral aversive extinction learning. Cerebellum 2014, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ploghaus, A.; Tracey, I.; Gati, J.S.; Clare, S.; Menon, R.S.; Matthews, P.M.; Rawlins, J.N. Dissociating pain from its anticipation in the human brain. Science 1999, 284, 1979–1981. [Google Scholar] [CrossRef] [PubMed]
- Schraa-Tam, C.K.L.; Rietdijk, W.J.R.; Verbeke, W.J.M.I.; Dietvorst, R.C.; Van Den Berg, W.E.; Bagozzi, R.P.; De Zeeuw, C.I. fMRI activities in the emotional cerebellum: A preference for negative stimuli and goal directed behavior. Cerebellum 2012, 11, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Singer, T.; Seymour, B.; O’Doherty, J.; Kaube, H.; Dolan, R.J.; Frith, C.D. Empathy for pain involves the affective but not sensory components of pain. Science 2004, 303, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Utz, A.; Thürling, M.; Ernst, T.M.; Hermann, A.; Stark, R.; Wolf, O.T.; Timmann, D.; Merz, C.Z. Cerebellar vermis contributes to the extinction of conditioned fear. Neurosci. Lett. 2015, 604, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Adamaszek, M.; Olbrich, S.; Kirkby, K.C.; Woldag, H.; Willert, C.; Heinrich, A. Event-related potentials indicating impaired emotional attention in cerebellar stroke—A case study. Neurosci. Lett. 2013, 548, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Adamaszek, M.; Kirkby, K.C.; D’Agata, F.; Olbrich, S.; Langner, S.; Steele, C.J.; Sehm, B.; Busse, S.; Kessler, C.; Hamm, A. Neural correlates of disturbed emotional face recognition in cerebellar lesions. Brain Res. 2015, 1613, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Giannicola, G.; Rosa, M.; Fumagalli, M.; Boggio, P.; Hallett, M.; Zago, S.; Priori, A. Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn. Emot. 2012, 26, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Nisimaru, N. Cardiovascular modules in the cerebellum. Jpn. J. Physiol. 2004, 54, 431–448. [Google Scholar] [CrossRef] [PubMed]
- Harper, R.M.; Gozal, D.; Bandler, R.; Spriggs, D.; Lee, J.; Alger, J. Regional brain activation in humans during respiratory and blood pressure challenges. Clin. Exp. Pharmacol. Physiol. 1998, 25, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Blood, J.D.; Wu, J.; Chaplin, T.M.; Hommer, R.; Vasquez, L.; Rutherford, H.J.; Mayes, L.C.; Crowley, M.J. The variability heart: High frequency and very low frequency correlates of depressive symptoms in children and adolescents. J. Affect. Disord. 2015, 186, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, B.; Scelfo, B.; Strata, P. The cerebellum: Synaptic changes and fear conditioning. Neuroscientist 2005, 11, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Tabbert, K.; Stark, R.; Kirsch, P.; Vaitl, D. Dissociation of neural responses and skin conductance reactions during fear conditioning with and without awareness of stimulus contingencies. Neuroimage 2006, 32, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Damasio, A.R.; Tranel, D.; Damasio, H.C. Somatic markers and the guidance of behavior: Theory and preliminary testing. In Frontal Lobe Function and Dysfunction; Levin, H.S., Eisenberg, H.M., Benton, L.B., Eds.; Oxford University Press: Oxford, UK, 1991; pp. 217–229. ISBN 9780195062847. [Google Scholar]
- Spyer, K.M. Central nervous control of the cardiovascular system. In Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System; Mathias, C.J., Bannister, R., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 45–55. ISBN 0199666504, 9780199666508. [Google Scholar]
- Watson, T.C.; Koutsikou, S.; Cerminara, N.L.; Flavell, C.R.; Crook, J.J.; Lumb, B.M.; Apps, R. The olivo-cerebellar system and its relationship to survival circuits. Front. Neural Circ. 2013, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Koutsikou, S.; Crook, J.J.; Earl, E.V.; Leith, J.L.; Watson, T.C.; Lumb, B.M.; Apps, R. Neural substrates underlying fear-evoked freezing: The periaqueductal grey-cerebellar link. J. Physiol. 2014, 592, 2197–2213. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.A.; Burne, R.A.; Woodward, D.J. The auditory corticopontocerebellar projection in the rat: Inputs to the paraflocculus and midvermis. An anatomical and physiological study. Exp. Brain Res. 1985, 59, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Ruediger, S.; Vittori, C.; Bednarek, E.; Genoud, C.; Strata, P.; Sacchetti, B.; Caroni, P. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 2011, 473, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Scelfo, B.; Hartell, N.A.; Strata, P.; Sacchetti, B. The effects of fear conditioning on cerebellar LTP and LTD. Eur. J. Neurosci. 2007, 26, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, B.; Scelfo, B.; Strata, P. Cerebellum and emotional behavior. Neuroscience 2009, 162, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Scelfo, B.; Sacchetti, B.; Strata, P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc. Natl. Acad. Sci. USA 2008, 105, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Greve, K.W.; Stanford, M.S.; Sutton, C.; Foundas, A.L. Cognitive and emotional sequelae of cerebellar infarct: A case-report. Arch. Clin. Neuropsychol. 1999, 14, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Levisohn, L.; Cronin-Golomb, A.; Schmahmann, J.D. Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain 2000, 123, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Riva, D.; Giorgi, C. The cerebellum contributes to higher function during development: Evidence from a series of children surgically treated for posterior fossa tumors. Brain 2000, 123, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Steinlin, M.; Imfeld, S.; Zulauf, P.; Boltshauser, E.; Lövblad, K.O.; Ridolfi Lüthy, A.; Perrig, W.; Kaufmann, F. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain 2003, 126, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Aarsen, F.; Dongen, H.V.; Paquier, P.; Mourik, M.V.; Catsman-Berrevoets, C. Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology 2004, 62, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, A.; Richter, S.; Hein-Kropp, C.; Schoch, B.; Gorissen, B.; Kaiser, O.; Gizewski, E.; Ziegler, W.; Timmann, D. Cerebellar mutism—Report of four cases. J. Neurol. 2004, 251, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Schoch, B.; Kaiser, O.; Groetschel, H.; Dimitrova, A.; Hein-Kropp, C.; Gizewski, E.R.; Timmann, D. Behavioral and affective changes in children and adolescents with chronic cerebellar lesions. Neurosci. Lett. 2005, 381, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Tavano, A.; Grasso, R.; Gagliardi, C.; Triulzi, F.; Bresolin, N.; Fabbro, F.; Borgatti, R. Disorders of cognitive and affective development cerebellar malformations. Brain 2007, 130, 2646–2660. [Google Scholar] [CrossRef] [PubMed]
- Marien, P.; Verslegers, L.; Moens, M.; Dua, G.; Herregods, P.; Verhoeven, J. Posterior fossa syndrome after cerebellar stroke. Cerebellum 2013, 12, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Anderson, S.W.; Martin, C.O.; Damasio, H.; Damasio, A.R. Pathological laughter and crying: A link to the cerebellum. Brain 2001, 124, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Famularo, G.; Corsi, F.; Minisola, G.; De Simone, C.; Nicotra, G. Cerebellar tumour presenting with pathological laughter and gelastic syncope. Eur. J. Neurol. 2007, 14, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Joseph, J.; Press, D.Z.; Schmahmann, J.D. Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov. Disord. 2007, 22, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. An emerging concept. The cerebellar contribution to higher function. Arch. Neurol. 1991, 48, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Timmann, D.; Drepper, J.; Frings, M.; Maschke, M.; Richter, S.; Gerwig, M.; Kolb, F.P. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 2010, 46, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Ramnani, N. The primate cortico-cerebellar system: Anatomy and function. Nat. Rev. Neurosci. 2006, 7, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Vuilleumier, P.; Pourtois, G. Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia 2007, 45, 174–194. [Google Scholar] [CrossRef] [PubMed]
- Kanwisher, N.; McDermott, J.; Chun, M.M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 1997, 17, 4302–4311. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, R. Neural systems for recognizing emotion. Curr. Opin. Neurobiol. 2002, 12, 169–177. [Google Scholar] [CrossRef]
- Schupp, H.T.; Ohman, A.; Junghofer, M.; Weike, A.I.; Stockburger, J.; Hamm, A.O. The facilitated processing of threatening faces: An ERP analysis. Emotion 2004, 4, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.L.; David, A.S. Facial processing in schizophrenia and delusional misidentification: Cognitive neuropsychiatric approaches. Schizophr. Res. 1995, 17, 109–114. [Google Scholar] [CrossRef]
- Frank, M.G.; Stennett, J. The forced-choice paradigm and the perception of facial expressions of emotion. J. Pers. Soc. Psychol. 2001, 80, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, T.; Johnson, M.H. The development of the social brain in human infancy. Eur. J. Neurosci. 2007, 25, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Ghashghaei, H.T.; Hilgetag, C.C.; Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 2007, 34, 905–923. [Google Scholar] [CrossRef] [PubMed]
- Rudebeck, P.H.; Bannerman, D.M.; Rushworth, M.F. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn. Affect. Behav. Neurosci. 2008, 8, 485–497. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, J.E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life; Simon & Schuster: New York, NY, USA, 1996; ISBN 9781439126387. [Google Scholar]
- LeDoux, J. The amygdala. Curr. Biol. 2007, 17, R868–R874. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, M.; Nielsen, A.H.; Vuust, P.; Dohn, A.; Roepstorff, A.; Lund, T.E. Amygdala and heart rate variability responses from listening to emotionally intense parts of a story. Neuroimage 2011, 58, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.J. Neurocognitive mechanisms of anxiety: An integrative account. Trends Cogn. Sci. 2007, 11, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Damasio, A. The Feeling of What Happens: Body and Emotion in the Making of Consciousness; Harcourt Brace: New York, NY, USA, 1999; ISBN 10: 0151003696. [Google Scholar]
- Pandya, D.N.; Yeterian, E.G. The anatomical substrates of emotional behavior: The role of the cerebral cortex. In Handbook of Neuropsychology; Emotional Behavior and its Disorders; Boller, F., Grafman, J., Eds.; Elsevier: New York, NY, USA, 2000; Volume 5, ISBN 0444503676, 9780444503671. [Google Scholar]
- Clausi, S.; Lupo, M.; Aloise, F.; Contento, M.P.; Pizzamiglio, L.; Molinari, M.; Leggio, M. Depression disorder in patients with cerebellar damage: Awareness of mood state. Manuscript in preparation.
- Lazarus, R. Emotion and Adaptation; Oxford University Press: New York, NY, USA, 1991; ISBN 0190281782, 9780190281786. [Google Scholar]
- Lazarus, R.; Smith, C. Appraisal components, core relational themes, and the emotions. In Appraisal and Beyond; Frijda, N., Ed.; Erlbaum: Hillsdale, NJ, USA, 1993; pp. 233–270. ISBN 0863779158, 9780863779152. [Google Scholar]
- Damasio, A.R.; Grabowski, T.J.; Bechara, A.; Damasio, H.; Ponto, L.L.; Parvizi, J.; Hichwa1, R.D. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat. Neurosci. 2000, 3, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H. Neural mechanisms of autonomic, affective, and cognitive integration. J. Comp. Neurol. 2005, 493, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C.L.; Christie, I.C.; Friedman, B.H. Autonomic specificity of basic emotions: Evidence from pattern classification and cluster analysis. Biol. Psychol. 2010, 84, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Posner, J.; Russell, J.A.; Peterson, B.S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 2005, 17, 715–734. [Google Scholar] [CrossRef] [PubMed]
- Colibazzi, T.; Posner, J.; Wang, Z.; Gorman, D.; Gerber, A.; Yu, S.; Zhu, H.; Kangarlu, A.; Duan, Y.; Russell, J.A.; et al. Neural systems subserving valence and arousal during the experience of induced emotions. Emotion 2010, 10, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Prinz, J. Gut Reactions: A Perceptual Theory of Emotion; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Sizer, L. Towards a computational theory of mood. Br. J. Philos. Sci. 2000, 51, 743–770. [Google Scholar] [CrossRef]
- Oatley, K.; Johnson-Laird, P. Cognitive approaches to emotions. Trends Cogn. Sci. 2014, 18, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Snow, W.M.; Stoesz, B.M.; Anderson, J.E. The cerebellum in emotional processing: Evidence from human and non-human animals. AIMS Neurosci. 2014, 1, 96–119. [Google Scholar] [CrossRef]
- Molinari, M.; Chiricozzi, F.R.; Clausi, S.; Tedesco, A.M.; De Lisa, M.; Leggio, M.G. Cerebellum and detection of sequences, from perception to cognition. Cerebellum 2008, 7, 611–615. [Google Scholar] [CrossRef]
- Leggio, M.G.; Chiricozzi, F.R.; Clausi, S.; Tedesco, A.M.; Molinari, M. The neuropsychological profile of cerebellar damage: The sequencing hypothesis. Cortex 2011, 47, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Molinari, M.; Restuccia, D.; Leggio, M.G. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum 2009, 8, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 2008, 9, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Leggio, M.; Molinari, M. Cerebellar sequencing: A trick for predicting the future. Cerebellum 2015, 14, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Paquette, S.; Mignault Goulet, G.; Rothermich, K. Prediction, attention and unconscious processing in hierarchical auditory perception. Front. Psychol. 2013, 4, 955–956. [Google Scholar] [CrossRef] [PubMed]
- Clausi, S.; Aloise, F.; Contento, M.P.; Pizzamiglio, L.; Molinari, M.; Leggio, M. Monitoring mood states in everyday life: A new device for patients with cerebellar ataxia. Psychiatry Res. 2014, 220, 719–721. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, E.; Casali, S. Seeking a unified framework for cerebellar function and dysfunction: From circuit operations to cognition. Front. Neural Circuits 2013, 6, 116. [Google Scholar] [CrossRef] [PubMed]
- Ito, M. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 2006, 78, 272–303. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, N.C.; Paradiso, S.; O’Leary, D.S. “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr. Bull. 1998, 24, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Beyer, J.L.; Krishnan, K.R. Volumetric brain imaging findings in mood disorders. Bipolar Disord. 2002, 4, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Olivito, G.; Clausi, S.; Laghi, F.; Tedesco, A.M.; Baiocco, R.; Mastropasqua, C.; Molinari, M.; Cercignani, M.; Bozzali, M.; Leggio, M. Resting-State Functional Connectivity Changes between Dentate Nucleus and Cortical Social Brain Regions in Autism Spectrum Disorders. Cerebellum 2017, 16, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, S.J.; Smith, J.S.; Steel, R.; Johnstone, E.C.; Frith, C.D. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: Evidence for breakdown in self-monitoring. Psychol. Med. 2000, 30, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
Study | Subjects | Task | Emotional Data | Unconscious/Conscious | |
---|---|---|---|---|---|
Clinical data | Annoni et al., 2003 [14] | n = 1 left cb stroke | - Clinical observation - Skin conductance | Emotional flattening and impaired autonomic reactivity to negative reinforcement | Unconscious |
Adamaszek et al., 2014 [69] | n = 15 with cb ischemic lesion | - Tübingen affect battery | Impaired recognition of emotional facial expression | Conscious | |
Clausi et al., 2012 [70] | n = 10 cb with dp n = 12 with major depression n = 15 cb with no dp | - SCL-90 - POMS - HDS - Self-mood monitoring | Inability to evaluate the own depressive mood | Conscious | |
Clausi et al., 2015 [71] | n = 15 with cb atrophy or focal cb damage | - Gambling task - Self-rating of regret | Impaired ability to recognize negative feelings of regret | Conscious | |
D’Agata et al., 2011 [72] | n = 20 with cb atrophy | - Ekman 60 faces test | Impairment in social emotions | Conscious | |
Garrad et al., 2008 [73] | n = 15 with cb atrophy (SCA3/SCA6) | - Emotion attribution - Social situations - ToM task | Impairment in ToM | Conscious | |
Maschke et al., 2000 [74] | n = 10 with cb focal lesion | - Fear-conditioned potentiation paradigm - Skin conductance | Impaired blink reflex and reduced skin conductance response only in patients with vermis lesion | Unconscious | |
Maschke et al., 2002 [75] | n = 5 with cb surgical lesions | - Fear conditioning - Skin conductance | Altered heart rate and skin conductance response | Unconscious | |
Parente et al., 2013 [76] | n = 1 with cb atrophy | - ToM (Faux pas task, strange stories, reading the mind in the eyes test) - Social situation task - Emotion attribution task | Impairment in ToM | Conscious | |
Sokolovsky et al., 2010 [77] | n = 8 with cb atrophy (SCA1/SCA2/SCA7) | - Emotion attribution task - ToM task | Impairment in social cognition | Conscious | |
Neuroimaging data | Critchley et al., 2000 [78] (PET) | n = 6 healthy | - Isometric exercise - Mental arithmetic stressor tasks - Mean arterial blood pressure (MAP) - Heart rate | In both exercise and mental stress tasks, increased rCBF in cb vermis, right anterior cingulate and right insula covaried with MAP | Unconscious |
Kattoor et al., 2013 [79] (fMRI) | n = 30 healthy | - Fear conditioning - Different learning phases: acquisition, extinction, reinstatement. | Activation of posterolateral cb areas (Crus I, Crus II, and VIIb) and dentate nucleus during acquisition; activation of posterolateral cb areas and the vermis during extinction | Unconscious and conscious | |
Ploghaus et al., 1999 [80] (fMRI) | n = 12 healthy | - Sequence of thermal stimulation (painful hot or non-painful warm) | Activation of anterior vermis for painful stimuli; activation of posterior regions during the anticipation phase of pain | Unconscious and conscious | |
Schraa-Tam et al., 2012 [81] (fMRI) | n = 20 healthy | - Observation and imitation of facial emotions images (positive/negative/neutral) | Activation of crus II for positive emotional faces; activation of hemispheres (lobules VI and VIIa) and vermis (VIII and IX) for negative emotional faces | Conscious | |
Scheuerecker et al., 2007 [36] (fMRI) | n = 12 healthy | - Implicit and explicit emotional paradigm using emotional faces (sad/angry) | Cerebellar activation only for explicit emotional recognition | Conscious | |
Singer et al., 2004 [82] (fMRI) | n = 16 healthy couples | - Pain stimulation - Pain empathy | Activation of the lateral cerebellum for feeling and empathy of pain | Conscious | |
Utz et al., 2015 [83] (fMRI) | n = 32 healthy | - Fear conditioning - Skin conductance | Activation of the anterior vermis during the extinction phase | Unconscious | |
Neurophysiological data | Adamaszek et al., 2013 [84] (ERPs) | n = 1 with right cb stroke | - IAPS pictures (emotional arousing pictures, with or without competing attentional tasks) | Impaired visual attention to emotional cues | Conscious |
Adamaszek et al., 2015 [85] (ERPs) | n = 8 with ischemic cb lesion | - Karolinska directed emotional faces database | Impaired recognition of emotional facial expression | Conscious | |
Schutter et al., 2009 [37] rTMS (medial cerebellum) | n = 15 healthy | - 20 Hz rTMS - Masked emotional faces task (happy/fearful/ neutral) - Affect scales (positive/negative) | Significant enhancement of the masked emotional responses to happy facial expressions. | Unconscious | |
Ferrucci et al., 2012 [86] tDCS (vermis) | n = 21 healthy | - Anodal/cathodal tDCS - Facial emotion recognition task - VAS for mood | Significant enhancement of the processing of negative facial expressions | Conscious |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clausi, S.; Iacobacci, C.; Lupo, M.; Olivito, G.; Molinari, M.; Leggio, M. The Role of the Cerebellum in Unconscious and Conscious Processing of Emotions: A Review. Appl. Sci. 2017, 7, 521. https://doi.org/10.3390/app7050521
Clausi S, Iacobacci C, Lupo M, Olivito G, Molinari M, Leggio M. The Role of the Cerebellum in Unconscious and Conscious Processing of Emotions: A Review. Applied Sciences. 2017; 7(5):521. https://doi.org/10.3390/app7050521
Chicago/Turabian StyleClausi, Silvia, Claudia Iacobacci, Michela Lupo, Giusy Olivito, Marco Molinari, and Maria Leggio. 2017. "The Role of the Cerebellum in Unconscious and Conscious Processing of Emotions: A Review" Applied Sciences 7, no. 5: 521. https://doi.org/10.3390/app7050521