Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Molecular Dynamic Simulation
2.3. Rheological Properties Test
3. Results and Discussion
3.1. Molecular Calculation Results
3.1.1. Mean Squared Displacement
3.1.2. Diffusion Coefficient
3.2. The Effect of Rejuvenators on the Rheological Properties
4. Conclusions
- Molecular dynamic simulation and rheological analysis results indicate that the severity level of aging has a significant influence on the diffusion coefficient and rejuvenating effect of rejuvenators. The investigated rejuvenators diffuse faster and more easily in the long-term aged binder, such as UV aged binder, but diffuse slower in the short-term aged bitumen binder. Consequently, there is a sufficient rejuvenating effect on the long-term aged bitumen and a limited effect on the short-term aged bitumen.
- Both R-1 and R-2 can reduce the complex modulus and increase the phase angle of the long-term aged bitumen, but R-1 has a greater recovery capacity than R-2. The rejuvenators presented greater rejuvenate ability at lower temperatures than at higher temperatures.
- Molecular simulation indicates that R-1 has a higher diffusion coefficient in aged bitumen binder than does R-2, while DSR proves that R-1 has greater recovery capacity. Molecular simulation and experiment results from the DSR test match quite well. This means that the molecular simulation proposed in this research can be successfully used to characterize the diffusion coefficient of rejuvenators in aged bitumen.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, S.; Qiu, J.; Mo, L.; Yu, J.; Zhang, Y.; Li, B. Investigation of temperature characteristics of recycled hot mix asphalt mixtures. Resour. Conserv. Recycl. 2007, 51, 610–620. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Wan, M.; Cui, P. Inhibiting effect of layered double hydroxides on the emissions of volatile organic compounds from bituminous materials. J. Clean. Prod. 2015, 108, 987–991. [Google Scholar] [CrossRef]
- Li, X.-G.; Lv, Y.; Ma, B.-G.; Chen, Q.-B.; Yin, X.-B.; Jian, S.-W. Utilization of municipal solid waste incineration bottom ash in blended cement. J. Clean. Prod. 2012, 32, 96–100. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Xiao, Y.; Zeng, W.; Yi, M.; Wan, J. Effect of hydration and silicone resin on basic oxygen furnace slag and its asphalt mixture. J. Clean. Prod. 2016, 112, 392–400. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, F.; Putman, B.; Leng, B.; Wu, S. High temperature properties of rejuvenating recovered binder with rejuvenator, waste cooking and cotton seed oils. Constr. Build. Mater. 2014, 59, 10–16. [Google Scholar] [CrossRef]
- Ma, T.; Wang, H.; Zhao, Y.; Huang, X.; Pi, Y. Strength mechanism and influence factors for cold recycled asphalt mixture. Adv. Mater. Sci. Eng. 2015, 2015, 181853. [Google Scholar] [CrossRef]
- Ma, T.; Huang, X.; Zhao, Y.; Zhang, Y. Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling. Constr. Build. Mater. 2015, 98, 530–536. [Google Scholar] [CrossRef]
- Sheikha, H.; Mehrotra, A.K.; Pooladi-Darvish, M. An inverse solution methodology for estimating the diffusion coefficient of gases in athabasca bitumen from pressure-decay data. J. Pet. Sci. Eng. 2006, 53, 189–202. [Google Scholar] [CrossRef]
- Dondi, G.; Mazzotta, F.; Simone, A.; Vignali, V.; Sangiorgi, C.; Lantieri, C. Evaluation of different short term aging procedures with neat, warm and modified binders. Constr. Build. Mater. 2016, 106, 282–289. [Google Scholar] [CrossRef]
- Karlsson, R.; Isacsson, U.; Ekblad, J. Rheological characterisation of bitumen diffusion. J. Mater. Sci. 2007, 42, 101–108. [Google Scholar] [CrossRef]
- Karlsson, R.; Isacsson, U. Application of ftir-atr to characterization of bitumen rejuvenator diffusion. J. Mater. Civ. Eng. 2003, 15, 157–165. [Google Scholar] [CrossRef]
- Karlsson, R.; Isacsson, U. Investigations on bitumen rejuvenator diffusion and structural stability (with discussion). J. Assoc. Asph. Paving Technol. 2003, 72, 463–501. [Google Scholar]
- Karlsson, R.; Isacsson, U. Laboratory studies of diffusion in bitumen using markers. J. Mater. Sci. 2003, 38, 2835–2844. [Google Scholar] [CrossRef]
- Mueller-Plathe, F.; Rogers, S.C.; Van Gunsteren, W.F. Diffusion coefficients of penetrant gases in polyisobutylene can be calculated correctly by molecular-dynamics simulations. Macromolecules 1992, 25, 6722–6724. [Google Scholar] [CrossRef]
- Hofmann, D.; Fritz, L.; Ulbrich, J.; Paul, D. Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides. Comput. Theor. Polym. Sci. 2000, 10, 419–436. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Z.; Wang, P.; Gong, X. Nanostructure characterization of asphalt-aggregate interface through molecular dynamics simulation and atomic force microscopy. Fuel 2017, 189, 155–163. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate. Constr. Build. Mater. 2016, 121, 246–254. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Xiao, Y.; Liu, G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew. Sustain. Energy Rev. 2015, 48, 624–634. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, B.; Shu, X.; Zhang, Y.; Woods, M.E. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders. Fuel 2016, 174, 267–273. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Hu, X.; Liu, G.; Li, B. Effect of material composition and environmental condition on thermal characteristics of conductive asphalt concrete. Materials 2017, 10, 218. [Google Scholar] [CrossRef]
- Sonnenburg, J.; Gao, J.; Weiner, J. Molecular dynamics simulations of gas diffusion through polymer networks. Macromolecules 1990, 23, 4653–4657. [Google Scholar] [CrossRef]
- Zhang, L.; Greenfield, M.L. Analyzing properties of model asphalts using molecular simulation. Energy Fuels 2007, 21, 1712–1716. [Google Scholar] [CrossRef]
- Bhasin, A.; Bommavaram, R.; Greenfield, M.L.; Little, D.N. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders. J. Mater. Civ. Eng. 2010, 23, 485–492. [Google Scholar] [CrossRef]
- Groenzin, H.; Mullins, O.C. Molecular size and structure of asphaltenes from various sources. Energy Fuels 2000, 14, 677–684. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, S.; Liu, G.; Pan, P. Molecular simulations and experimental evaluation on the curing of epoxy bitumen. Mater. Struct. 2016, 49, 241–247. [Google Scholar] [CrossRef]
- Sadus, R.J. Molecular Simulation of Fluids; Elsevier Science Ltd.: New York, NY, USA, 2002. [Google Scholar]
- Bosko, J.T.; Todd, B.; Sadus, R.J. Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NPT) and isothermal-isochoric (NVT) ensemble systems. J. Chem. Phys. 2005, 123, 034905. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; van de Ven, M.; Molenaar, A.; Su, Z.; Zandvoort, F. Characteristics of two-component epoxy modified bitumen. Mater. Struct. 2011, 44, 611–622. [Google Scholar] [CrossRef]
- CEN-European Committee for Standardization. Nen-en 14770 Bitumen and Bituminous Binders-Determination of Complex Shear Modulus and Phase Angle-Dynamic Shear Rheometer (DSR); BSI: London, UK, 2012. [Google Scholar]
Parameter | R-1 | R-2 | Test Methods |
---|---|---|---|
Appearance | Viscose liquid | Viscose liquid | -- |
Color | tawny | brown | -- |
Viscosity (25 °C), SFS | 40 | 15 | ASTM D-244 |
Residue, wt % | 65 | 60 | ASTM D-244 |
Weight ratio for rejuvenate, % | 8 | 8 | ASTM D-2006-70 |
Asphaltenes, wt % | 0.4 | 0.75 | -- |
Rejuvenator | Functional Groups | |||||
R-1 | | | | | | |
R-2 | | | | | | - |
Temperature Ranges | Virgin Binder, Rejuvenated Binders (%) | RTFOT, PAV and UV Binders (%) |
---|---|---|
−10–30 °C | 0.03 | 0.02 |
30–60 °C | 1.5 | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Li, C.; Wan, M.; Zhou, X.; Wang, Y.; Wu, S. Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder. Appl. Sci. 2017, 7, 397. https://doi.org/10.3390/app7040397
Xiao Y, Li C, Wan M, Zhou X, Wang Y, Wu S. Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder. Applied Sciences. 2017; 7(4):397. https://doi.org/10.3390/app7040397
Chicago/Turabian StyleXiao, Yue, Chao Li, Miao Wan, Xinxing Zhou, Yefei Wang, and Shaopeng Wu. 2017. "Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder" Applied Sciences 7, no. 4: 397. https://doi.org/10.3390/app7040397
APA StyleXiao, Y., Li, C., Wan, M., Zhou, X., Wang, Y., & Wu, S. (2017). Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder. Applied Sciences, 7(4), 397. https://doi.org/10.3390/app7040397