Wavefront Shaping by a Small-Aperture Deformable Mirror in the Front Stage for High-Power Laser Systems
Abstract
:1. Introduction
2. The Method of Wavefront Shaping
3. Experimental Setup
4. Experimental Results and Discussion
4.1. Wavefront Compensation without the Main Amplifiers in Operation
4.2. Wavefront Compensation with the Main Amplifiers in Operation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moses, E.I. Ignition on the National Ignition Facility: A path towards inertial fusion energy. Nucl. Fusion 2009, 49, 104022. [Google Scholar] [CrossRef]
- Obenschain, S.; Lehmberg, R.; Kehne, D.; Hegeler, F.; Wolford, M.; Sethian, J.; Weaver, J.; Karasik, M. High-energy krypton fluoride lasers for inertial fusion. Appl. Opt. 2015, 54, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.B.; Danson, C.N. Inertial confinement fusion and prospects for power production. High Power Laser Sci. Eng. 2015, 3, e4. [Google Scholar] [CrossRef]
- Beck, R.J.; Parry, J.P.; MacPherson, W.N.; Waddie, A.; Weston, N.J.; Shephard, J.D.; Hand, D.P. Application of cooled spatial light modulator for high power nanosecond laser micromachining. Opt. Express 2010, 18, 17059–17065. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Cui, C.; Liu, Z.; Yuan, H.; Wang, H.; Wang, Y.; Lu, Z. Drilling study on Cu, Mo, W and Ti by using SBS pulse compressed steep leading edge hundred picoseconds laser. Optik 2016, 127, 11156–11160. [Google Scholar] [CrossRef]
- Elder, I. Performance requirements for countermeasures lasers. Proc. SPIE 2010, 7836, 783605. [Google Scholar]
- Remo, J.L.; Adams, R.G. High energy density laser interactions with planetary and astrophysical materials: methodology and data. Proc. SPIE 7005 High-Power Laser Ablation VII 2008, 7005. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Wang, Z.; Lv, Z.; Zhang, Z.; Wei, Z. Diode-pumped high energy and high average power all-solid-state picosecond amplifier systems. Appl. Sci. 2015, 5, 1590–1602. [Google Scholar] [CrossRef]
- Divoky, M.; Smrz, M.; Chyla, M.; Sikocinski, P.; Severova, P.; Novak, O.; Huynh, J.; Nagisetty, S.; Miura, T.; Pilař, J. Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry. High Power Laser Sci. Eng. 2014, 2, e14. [Google Scholar] [CrossRef]
- Novák, O.; Miura, T.; Smrž, M.; Chyla, M.; Nagisetty, S.S.; Mužík, J.; Linnemann, J.; Turčičová, H.; Jambunathan, V.; Slezák, O. Status of the high average power diode-pumped solid state laser development at HiLASE. Appl. Sci. 2015, 5, 637–665. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, Y.; Lu, Z.; Yuan, H.; Zheng, Z.; Li, S.; Chen, Y.; Liu, Z.; Cui, C.; Wang, H.; Liu, R. High compact, high quality single longitudinal mode hundred picoseconds laser based on stimulated brillouin scattering pulse compression. Appl. Sci. 2016, 6, 29. [Google Scholar] [CrossRef]
- Yu, M.; Hu, G.; An, N.; Qian, F.; Wu, Y.; Zhang, X.; Gu, Y.; Wang, Q.; Zheng, J. Hard X-ray transmission curved crystal spectrometers (10–100 keV) for laser fusion experiments at the ShenGuang-III laser facility. High Power Laser Sci. Eng. 2016, 4, e2. [Google Scholar] [CrossRef]
- Kruschwitz, B.; Bahk, S.-W.; Bromage, J.; Moore, M.; Irwin, D. Accurate target-plane focal-spot characterization in high-energy laser systems using phase retrieval. Opt. Express 2012, 20, 20874–20883. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.E.; Auerbach, J.M.; Adams, C.H.; Bumpas, S.E.; Hibbard, R.; Lee, C.S.; Roberts, D.; Campbell, J.H.; Wegner, P.J.; Van Wonterghem, B.M. National Ignition Facility frequency converter development. Proc. SPIE 1997, 3047, 197–202. [Google Scholar]
- Auerbach, J.M.; Wegner, P.J.; Couture, S.A.; Eimerl, D.; Hibbard, R.L.; Milam, D.; Norton, M.A.; Whitman, P.K.; Hackel, L.A. Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities. Appl. Opt. 2001, 40, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Ramsey, M.; Smith, I.; Headley, D.; Porter, J. Low order adaptive optics on Z-Beamlet using a single actuator deformable mirror. Opt. Commun. 2006, 264, 203–212. [Google Scholar] [CrossRef]
- Kasprzack, M.; Canuel, B.; Cavalier, F.; Day, R.; Genin, E.; Marque, J.; Sentenac, D.; Vajente, G. Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams. Appl. Opt. 2013, 52, 2909–2916. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, A.A.; Khazanov, E.A.; Kulagin, O.V.; Shaykin, A.A. Neodymium glass laser with a phase conjugate mirror producing 220 J pulses at 0.02 Hz repetition rate. Opt. Express 2014, 22, 20842–20855. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.J.; Park, S.; Cha, S.; Ahn, H.; Lee, H.; Oh, J.; Lee, B.J.; Choi, S.; Kim, J.S. Conceptual design of the Kumgang laser: A high-power coherent beam combination laser using SC-SBS-PCMs towards a dream laser. High Power Laser Sci. Eng. 2015, 3, e1. [Google Scholar] [CrossRef]
- Dane, C.; Zapata, L.; Neuman, W.; Norton, M.; Hackel, L. Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction. IEEE J. Quantum Electron. 1995, 31, 148–163. [Google Scholar] [CrossRef]
- Dane, C.B.; Hackel, L.A.; Halpin, J.M.; Daly, J.; Harrisson, J.; Harris, F.B., Jr. High-throughput laser peening of metals using a high-average-power Nd: Glass laser system. Proc. SPIE 2000, 3887, 211–221. [Google Scholar]
- Kalal, M.; Kong, H.J.; Slezak, O.; Koresheva, E.R.; Park, S.; Startsev, S.A. Recent progress made in the SBS PCM approach to self-navigation of lasers on direct drive IFE targets. J. Fusion Energy 2010, 29, 527–531. [Google Scholar] [CrossRef]
- Bahk, S.-W.; Fess, E.; Kruschwitz, B.E.; Zuegel, J.D. A high-resolution, adaptive beam-shaping system for high-power lasers. Opt. Express 2010, 18, 9151–9163. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.M. Initial Demonstration of Mercury Wavefront Correction System; Report UCRL-TR-218721; Lawrence Livermore National Laboratory (LLNL): Livermore, CA, USA, 2006. [Google Scholar]
- Canova, F.; Flacco, A.; Canova, L.; Clady, R.; Chambaret, J.-P.; Ple, F.; Pittman, M.; Planchon, T.; Silva, M.; Benocci, R. Efficient aberrations pre-compensation and wavefront correction with a deformable mirror in the middle of a petawatt-class CPA laser system. Laser Part. Beams 2007, 25, 649–655. [Google Scholar] [CrossRef]
- Dong, B.; Li, Y.; Han, X.-L.; Hu, B. Dynamic aberration correction for conformal window of high-speed aircraft using optimized model-based wavefront sensorless adaptive optics. Sensors 2016, 16, 1414. [Google Scholar] [CrossRef] [PubMed]
- Devaney, N.; Dalimier, E.; Farrell, T.; Coburn, D.; Mackey, R.; Mackey, D.; Laurent, F.; Daly, E.; Dainty, C. Correction of ocular and atmospheric wavefronts: A comparison of the performance of various deformable mirrors. Appl. Opt. 2008, 47, 6550–6562. [Google Scholar] [CrossRef] [PubMed]
- Florentin, R.; Kermene, V.; Benoist, J.; Desfargesberthelemot, A.; Pagnoux, D.; Barthélémy, A.; Huignard, J.P. Shaping the light amplified in a multimode fiber. Light Sci. Appl. 2017, 6, e16208. [Google Scholar] [CrossRef]
- Zacharias, R.; Bliss, E.; Winters, S.; Sacks, R.A.; Feldman, M.; Grey, A.; Koch, J.A.; Stolz, C.J.; Toeppen, J.S.; Van Atta, L. Wavefront control of high-power laser beams in the National Ignition Facility (NIF). Proc. SPIE 2000, 3889, 332–343. [Google Scholar]
- Zacharias, R.A.; Beer, N.R.; Bliss, E.S.; Burkhart, S.C.; Cohen, S.J.; Sutton, S.B.; Van Atta, R.; Winters, S.E.; Salmon, J.T.; Latta, M.R. Alignment and wavefront control systems of the National Ignition Facility. Opt. Eng. 2004, 43, 2873–2884. [Google Scholar] [CrossRef]
- Waxer, L.; Maywar, D.; Kelly, J.; Kessler, T.; Kruschwitz, B.; Loucks, S.; McCrory, R.; Meyerhofer, D.; Morse, S.; Stoeckl, C. High-energy petawatt capability for the OMEGA laser. Opt. Photonics News 2005, 16, 30–36. [Google Scholar] [CrossRef]
- Bromage, J.; Bahk, S.-W.; Irwin, D.; Kwiatkowski, J.; Pruyne, A.; Millecchia, M.; Moore, M.; Zuegel, J. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers. Opt. Express 2008, 16, 16561–16572. [Google Scholar] [PubMed]
- Mainguy, S.; Grosset-Grange, C.; Bordenave, E. Performance of a high-resolution deformable mirror for wavefront correction on the LIL/LMJ and PETAL baselines. J. Phys. Conf. Ser. 2010, 244, 032021. [Google Scholar] [CrossRef]
- Wanjun, D.; Dongxia, H.; Wei, Z.; Junpu, Z.; Feng, J.; Zeping, Y.; Kun, Z.; Xuejun, J.; Wu, D.; Runchang, Z. Beam wavefront control of a thermal inertia laser for inertial confinement fusion application. Appl. Opt. 2009, 48, 3691–3694. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.; Dai, W.; Hu, D.; Wang, D.; Liu, L.; Zhou, W.; Zhang, X.; Deng, W.; Zhang, K. Beam wavefront correction scheme for application in a multi-pass amplifier system. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Sydney, Australia, 28 August–1 September 2011. [Google Scholar]
- Divoky, M.; Sikocinski, P.; Pilar, J.; Lucianetti, A.; Sawicka, M.; Slezak, O.; Mocek, T. Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion. Opt. Eng. 2013, 52, 064201. [Google Scholar] [CrossRef]
- Pilar, J.; Slezak, O.; Sikocinski, P.; Divoky, M.; Sawicka, M.; Bonora, S.; Lucianetti, A.; Mocek, T.; Jelinkova, H. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE). Appl. Opt. 2014, 53, 3255–3261. [Google Scholar] [CrossRef] [PubMed]
- Lucianetti, A.; Sawicka, M.; Slezak, O.; Divoky, M.; Pilar, J.; Jambunathan, V.; Bonora, S.; Antipenkov, R.; Mocek, T. Design of a kJ-class HiLASE laser as a driver for inertial fusion energy. High Power Laser Sci. Eng. 2014, 2, e13. [Google Scholar] [CrossRef]
- Williams, W.H.; Auerbach, J.M.; Henesian, M.A.; Lawson, J.K.; Hunt, J.T.; Sacks, R.A.; Widmayer, C.C. Modeling characterization of the National Ignition Facility focal spot. Proc. SPIE 1998, 3264, 93–104. [Google Scholar]
- Haber, A.; Polo, A.; Smith, C.S.; Pereira, S.F.; Urbach, P.; Verhaegen, M. Iterative learning control of a membrane deformable mirror for optimal wavefront correction. Appl. Opt. 2013, 52, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Chen, Y.; Du, P.; Ba, D.; Zheng, Z.; Wang, X.; Yuan, H.; et al. Hundred-Joule-level, nanosecond-pulse Nd:glass laser system with high spatiotemporal beam quality. High Power Laser Sci. Eng. 2016, 4, e10. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Chen, Y.; Du, P.; Zheng, Z.; Ba, D.; Yuan, H.; Zhu, C. Hundred-J-Level, Nanosecond-Pulse Nd: glass Laser System with High Beam Quality. In Proceedings of the European Conference on Lasers and Electro-Optics, Munich, Germany, 21–25 June 2015. [Google Scholar]
- Wang, Y.; Liu, R.; Yuan, H.; Li, S.; Liu, Z.; Zhu, X.; He, W.; Lu, Z. Using an active temporal compensating system to achieve the super-Gaussian pulses in high-power lasers. In Proceedings of the SPIE, International Symposium on Photonics and Optoelectronics, Shanghai, China, 22 August 2015. [Google Scholar]
- Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Cui, C.; Chen, Y.; Pengyuan, D.; Ba, D.; Zheng, Z.; Yuan, H.; et al. Spatial beam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator. Opt. Commun. 2016, 367, 181–185. [Google Scholar] [CrossRef]
- Ding, L.; Li, S.; Zhou, L.; Lu, Z.; Wang, Y.; Tan, T.; Yuan, H.; Bai, Z.; Cui, C. Study on near-field image extraction in high power lasers. Optik 2016, 127, 4495–4497. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Du, P.; Chen, Y.; Zheng, Z.; Ba, D.; Dong, Y.; Yuan, H. High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system. Opt. Express 2015, 23, 681–689. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhou, L.; Cui, C.; Wang, K.; Yan, X.; Wang, Y.; Ding, L.; Wang, Y.; Lu, Z. Wavefront Shaping by a Small-Aperture Deformable Mirror in the Front Stage for High-Power Laser Systems. Appl. Sci. 2017, 7, 379. https://doi.org/10.3390/app7040379
Li S, Zhou L, Cui C, Wang K, Yan X, Wang Y, Ding L, Wang Y, Lu Z. Wavefront Shaping by a Small-Aperture Deformable Mirror in the Front Stage for High-Power Laser Systems. Applied Sciences. 2017; 7(4):379. https://doi.org/10.3390/app7040379
Chicago/Turabian StyleLi, Sensen, Luoxian Zhou, Can Cui, Kai Wang, Xiusheng Yan, Yirui Wang, Lei Ding, Yulei Wang, and Zhiwei Lu. 2017. "Wavefront Shaping by a Small-Aperture Deformable Mirror in the Front Stage for High-Power Laser Systems" Applied Sciences 7, no. 4: 379. https://doi.org/10.3390/app7040379
APA StyleLi, S., Zhou, L., Cui, C., Wang, K., Yan, X., Wang, Y., Ding, L., Wang, Y., & Lu, Z. (2017). Wavefront Shaping by a Small-Aperture Deformable Mirror in the Front Stage for High-Power Laser Systems. Applied Sciences, 7(4), 379. https://doi.org/10.3390/app7040379