Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of the Starting Materials
2.2. Characterization of the Starting Materials
2.2.1. Thermal Analysis
2.2.2. X-ray Diffraction Analysis
2.3. Preparation of the Glass-Ceramic Samples
2.4. Characterization of the Glass-Ceramic Samples
2.4.1. X-ray Diffraction Analysis
2.4.2. Physical and Mechanical Characterizations
2.4.3. In Vitro Bioactivity
2.5. Proposal of Application: Design and Development of a Bilayered Glass-Ceramic Implant
3. Results
3.1. Starting Materials
3.1.1. Thermal Analysis
3.1.2. XRD Investigations
3.2. Glass-Ceramic Derivatives
3.2.1. XRD Investigations
3.2.2. Physical and Mechanical Characterizations
3.2.3. In Vitro Bioactivity Assessment
3.3. Bilayered Glass-Ceramic Implant
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Bayne, S.C. Dental biomaterials: Where are we and where are we going? J. Dent. Educ. 2005, 69, 571–585. [Google Scholar] [PubMed]
- Cho, Y.D.; Seol, Y.J.; Lee, Y.M.; Rhyu, I.C.; Ryoo, H.M.; Ku, Y. An overview of biomaterials in periodontology and implant dentistry. Adv. Mater. Sci. Eng. 2017, 2017, 1948241. [Google Scholar] [CrossRef]
- Bhargavi, A.; Ajay, S.; Rohit, B.; Vishal, A.; Minkle, G. Comparative tooth anatomy—A review. Int. J. Dent. Sci. Res. 2013, 1, 34–37. [Google Scholar] [CrossRef]
- Denry, I.L.; Holloway, J.A.; Rosenstiel, S.F. Crystallization kinetics of a low-expansion feldspar glass for dental applications. J. Biomed. Mater. Res. 1998, 41, 398–404. [Google Scholar] [CrossRef]
- Ramalho, A.; Antunes, P.V. Reciprocating wear test of dental composites against human teeth and glass. Wear 2007, 263, 1095–1104. [Google Scholar] [CrossRef]
- Weiss, P.; Lapkowski, M.; LeGeros, R.Z.; Bouler, J.M.; Jean, A.; Daculsi, G. Fourier-transform infrared spectroscopy study of an organic-mineral composite for bone and dental substitute materials. J. Mater. Sci. Mater. Med. 1997, 8, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.L. Review of the current status and challenges for dental posterior restorative composites: Clinical, chemistry, and physical behavior considerations (Summary of discussion from the Portland Composites Symposium (POCOS) 17–19 June 2004, Oregon Health & Science University, Portland, Oregon). Dent. Mater. 2005, 21, 3–6. [Google Scholar] [PubMed]
- Sajewicz, E. On evaluation of wear resistance of tooth enamel and dental materials. Wear 2005, 260, 1256–1261. [Google Scholar] [CrossRef]
- Holand, W.; Frank, M.; Rheinberger, V. Surface crystallization of leucite in glasses. J. Non-Cryst. Solids 1995, 180, 292–307. [Google Scholar] [CrossRef]
- Cattell, M.J.; Chandwick, T.C.; Knowles, J.C.; Clarke, R.L.; Samarawickrama, D.Y.D. The nucleation and crystallization of fine grained leucite glass-ceramics for dental applications. Dent. Mater. 2006, 22, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Holand, W.; Rheinberger, V.; Apel, E.; Van’t Hoen, C. Principles and phenomena of bioengineering with glass-ceramics for dental restoration. J. Eur. Ceram. Soc. 2007, 27, 1521–1526. [Google Scholar] [CrossRef]
- Ananth, H.; Kundapur, V.; Mohammed, H.S.; Anand, M.; Amarnath, G.S.; Mankar, S. A review on biomaterials in dental implantology. Int. J. Biomed. Sci. 2015, 11, 113–120. [Google Scholar] [PubMed]
- Hong, M.H.; Min, B.K.; Kwon, T.Y. Fabricating high-quality 3D-printed alloys for dental applications. Appl. Sci. 2017, 7, 710. [Google Scholar] [CrossRef]
- Rohanizadeh, R.; LeGeros, R.Z.; Harsono, M.; Bendavid, A. Adherent apatite coating on titanium substrate using chemical deposition. J. Biomed. Mater. Res. A 2005, 72, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, N.; Negami, S.; Odaka, T.; Morii, T.; Koshino, T. Histological observations on tissue reaction of the rat calcaneal tendon to sintered hydroxyapatite. J. Mater. Sci. Lett. 1989, 8, 869–871. [Google Scholar] [CrossRef]
- Albrektsson, T.; Branemark, P.I.; Hansson, H.A.; Kasemo, B.; Larsson, K.; Lundstrom, I.; McQueen, D.H.; Skalak, R. The interface zone of inorganic implants in vivo: Titanium implants in bone. Ann. Biomed. Eng. 1983, 11, 1–27. [Google Scholar] [CrossRef]
- Cochran, D.L.; Schenk, R.K.; Lussi, A.; Higginbottom, F.L.; Buser, D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. J. Biomed. Mater. Res. 1998, 40, 1–11. [Google Scholar] [CrossRef]
- Palka, V.; Ivan, J.; Postrkova, E.; Kolenciak, V.; Krsek, A.; Infner, I.; Koerten, H.K. The effect of biological environment on the surface of titanium and plasma-sprayed layer of hydroxylapatite. J. Mater. Sci. Mater. Med. 1998, 9, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Jayaswal, G.P.; Dange, S.P.; Khalikar, A.N. Bioceramic in dental implants: A review. J. Indian Prosthodont. Soc. 2010, 10, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, Z.; Bahrololoom, M.E.; Shariat, M.H.; Bagheri, R. Bioactive glasses in dentistry: A review. J. Dent. Biomater. 2015, 2, 1–9. [Google Scholar]
- Jitaru, S.; Hodisan, I.; Timis, L.; Lucian, A.M.; Bud, M. The use of bioceramics in endodontics—Literature review. Clujul Med. 2016, 89, 470–473. [Google Scholar]
- Al-Haddad, A.; Che Ab Aziz, Z.A. Bioceramic-based root canal sealers: A review. Int. J. Biomater. 2016, 2016, 9753210. [Google Scholar] [CrossRef] [PubMed]
- Wren, A.W. Vitreous materials for dental restoration and reconstruction. Adv. Struct. Mater. 2016, 53, 203–225. [Google Scholar]
- Montazerian, M.; Zanotto, E.D. Bioactvie and inert dental glass-ceramics. J. Biomed. Mater. Res. A 2017, 105, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Verné, E.; Vitale-Brovarone, C.; Bui, E.; Bianchi, C.L.; Boccaccini, A.R. Surface functionalization of bioactive glasses. J. Biomed. Mater. Res. A 2009, 90, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Vitale-Brovarone, C.; Baino, F.; Miola, M.; Mortera, R.; Onida, B.; Verné, E. Glass-ceramic scaffolds containing silica mesophases for bone grafting and drug delivery. J. Mater. Sci. Mater. Med. 2009, 20, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Ferraris, M.; Bretcanu, O.; Verné, E.; Vitale-Brovarone, C. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J. Biomater. Appl. 2013, 27, 872–890. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Baino, F.; Fiorilli, S.; Vitale-Brovarone, C.; Onida, B. Al-MCM-41 inside a glass-ceramic scaffold: A meso-macroporous system for acid catalysis. J. Eur. Ceram. Soc. 2013, 33, 1535–1543. [Google Scholar] [CrossRef]
- ISO 6872:2015. Dentistry-Ceramic Materials. Available online: https://www.iso.org/standard/59936.html (accessed on 18 November 2017).
- Anstis, G.R.; Chantikul, P.; Lawn, B.R.; Marshall, D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- ASTM C1259-14. Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration. 2014. Available online: https://compass.astm.org/Standards/HISTORICAL/C1259-14.htm (accessed on 18 November 2017).
- Labella, R.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 1999, 15, 128–137. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Clifford, A.; Hill, R.G.; Towler, M.R.; Wood, D.J. The crystallisation of glasses from the ternary CaF2-CaAl2Si2O8-P2O5 system. J. Mater. Sci. 2001, 36, 3955–3961. [Google Scholar] [CrossRef]
- Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 2014, 102, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Wilson, J.; Pigott, G.H.; Schoen, F.J.; Hench, L.L. Toxicology and biocompatibility of bioglasses. J. Biomed. Mater. Res. 1981, 15, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. Bioactive ceramics. Ann. N. Y. Acad. Sci. 1988, 523, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Baino, F. Porous glass-ceramic orbital implants: A feasibility study. Mater. Lett. 2018, 212, 12–15. [Google Scholar] [CrossRef]
- Baino, F.; Verné, E.; Vitale-Brovarone, C. 3-D high strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Mater. Sci. Eng. C 2009, 29, 2055–2062. [Google Scholar] [CrossRef]
- Vitale-Brovarone, C.; Baino, F.; Verné, E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J. Mater. Sci. Mater. Med. 2009, 20, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, L.; Chevalier, J.; Gremillard, L.; Zenati, R.; Thollet, G.; Bernache-Assolant, D.; Govin, A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007, 55, 3305–3313. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Chen, Q.Z.; Lefebvre, L.; Gremillard, L.; Chevalier, J. Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass–ceramics. Faraday Discuss. 2007, 136, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Bretcanu, O.; Chatzistavrou, X.; Paraskevpoulos, K.; Conradt, R.; Thompson, I.; Boccaccini, A.R. Sintering and crystallization of 45S5 Bioglass® powder. J. Eur. Ceram. Soc. 2009, 29, 3299–3306. [Google Scholar] [CrossRef]
- Jones, J.R.; Brauer, D.S.; Hupa, L.; Greenspan, D.C. Bioglass and bioactive glasses and their impact on healthcare. Int. J. Appl. Glass Sci. 2016, 7, 423–434. [Google Scholar] [CrossRef]
- Wu, C.; Chang, J.; Zhai, W.; Ni, S.; Wang, J. Porous akermanite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B (Appl. Biomater.) 2006, 78, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jin, X.; Zhang, X.; Sun, H.; Tu, J.; Tang, T.; Chang, J.; Dai, K. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 2009, 30, 5041–5048. [Google Scholar] [CrossRef] [PubMed]
- Boskey, A.L. Mineralization of bones and teeth. Elements 2007, 6, 385–392. [Google Scholar] [CrossRef]
- Da Rocha Barros, V.M.; Salata, L.A.; Sverzut, C.E.; Xavier, S.P.; Van Noort, R.; Johnson, A.; Hatton, P.V. In vivo bone tissue response to a canasite glass-ceramic. Biomaterials 2002, 23, 2895–2900. [Google Scholar] [CrossRef]
- Bubb, N.L.; Wood, D.; Streit, J.P. Reduction of the solubility of fluorcanasite based glass ceramics by additions of SiO2 and AlPO4. Glass Technol. 2004, 45, 91–93. [Google Scholar]
- Kokubo, T.; Ito, S.; Sakka, S.; Yamamuro, T. Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J. Mater. Sci. 1986, 21, 536–540. [Google Scholar] [CrossRef]
- Sautier, J.M.; Kokubo, T.; Ohtsuki, T.; Nefussi, J.R.; Boulekbache, H.; Oboeuf, M.; Loty, S.; Loty, C.; Forest, N. Bioactive glass-ceramic containing crystalline apatite and wollastonite initiates biomineralization in bone cell cultures. Calcif. Tissue Int. 1994, 55, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Kraft, L.; Engqvist, H.; Hermansson, L. Early-age deformation, drying shrinkage and thermal dilation in a new type of dental restorative material based on calcium aluminate cement. Cem. Concr. Res. 2004, 34, 439–446. [Google Scholar] [CrossRef]
- Fong, H.; Sarikaya, M.; White, S.N.; Snead, M.L. Nano-mechanical properties profiles across dentin—enamel junction of human incisor teeth. Mater. Sci. Eng. C 2000, 7, 119–128. [Google Scholar] [CrossRef]
- Finke, M.; Hughes, J.A.; Parker, D.M.; Jandt, K.D. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation. Surf. Sci. 2001, 491, 456–467. [Google Scholar] [CrossRef]
- Mahoney, E.K.; Rohanizadeh, R.; Ismail, F.S.M.; Kilpatrick, N.M.; Swain, M.V. Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 2004, 25, 5091–5100. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Wang, D.H.; Zhang, D.; Romberg, E.; Arola, D. Mechanical properties of human enamel as a function of age and location in the tooth. J. Mater. Sci. Mater. Med. 2008, 19, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Taskonak, B.; Platt, J.A.; Mecholsky, J.J., Jr. Evaluation of fracture toughness of human dentin using elastic-plastic fracture mechanics. J. Biomech. 2008, 41, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.H.; Nalla, R.K.; Pople, J.A.; Breunig, T.M.; Ritchie, R.O. Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties. Biomaterials 2005, 26, 3363–3376. [Google Scholar] [CrossRef] [PubMed]
- Low, I.M.; Duraman, N.; Mahmood, U. Mapping the structure, composition and mechanical properties of human teeth. Mater. Sci. Eng. C 2008, 28, 243–247. [Google Scholar] [CrossRef]
- Schwartz, Z.; Boyan, B.D. Underlying mechanisms at the bone-biomaterial interface. J. Cell. Biochem. 1994, 56, 340–347. [Google Scholar] [CrossRef] [PubMed]
- ElBatal, F.H.; Azooz, M.A.; Hamdy, Y.M. Preparation and characterization of some multicomponent silicate glasses and their glass-ceramics derivatives for dental applications. Ceram. Int. 2009, 35, 1211–1218. [Google Scholar] [CrossRef]
- Lee, Y.K. Translucency of dental ceramic, post and bracket. Materials 2015, 8, 7241–7249. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, A.; Buchalla, W.; Attin, T. Review on fluoride-releasing restorative materials-fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent. Mater. 2007, 23, 343–362. [Google Scholar] [CrossRef] [PubMed]
Glass Name | Composition (mol.%) | Melting Conditions | |||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | P2O5 | CaO | Na2O | MgO | K2O | Al2O3 | CaF2 | ||
CEL2 | 45 | 3 | 26 | 15 | 7 | 4 | - | - | 1400 °C for 1 h |
FaGC | 50 | 6 | 18 | 7 | 3 | 7 | - | 9 | 1550 °C for 1 h |
SCNA | 57 | - | 34 | 6 | - | - | 3 | - | 1550 °C for 1 h |
Sample | Parent Material | Sintering Conditions | ρs (g∙cm−3) |
---|---|---|---|
TT-CEL2 | CEL2 | 1000 °C for 3 h | 2.46 ± 0.10 |
TT-FaGC | FaGC | 800 °C for 3 h | 2.50 ± 0.12 |
TT-SCNA | SCNA | 1000 °C for 3 h | 2.53 ± 0.11 |
Material | Tg (°C) | Tx (°C) | Tm (°C) | α (×10−6 °C−1) |
---|---|---|---|---|
CEL2 | 550 ± 10 | 650 ± 10; 850 ± 10 | 1100 | 12.0 |
FaGC | 520 ± 10 | 730 ± 10; 780 ± 10 | 1300 | 12.7 |
SCNA | 690 ± 10 | 850 ± 10 | 1200 | 8.7 |
Sample | σb (MPa) | E (GPa) | HV (GPa) | KIC (MPa∙m1/2) |
---|---|---|---|---|
TT-CEL2 | 65.0 ± 21.0 | 85.0 ± 2.0 | 7.4 ± 0.8 | 2.40 ± 0.25 |
TT-FaGC | 70.0 ± 26.0 | 55.0 ± 2.0 | 8.8 ± 1.3 | 2.19 ± 0.20 |
TT-SCNA | 125.0 ± 24.0 | 98.0 ± 3.0 | 11.6 ± 1.2 | 2.98 ± 0.40 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baino, F.; Verné, E. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity. Appl. Sci. 2017, 7, 1330. https://doi.org/10.3390/app7121330
Baino F, Verné E. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity. Applied Sciences. 2017; 7(12):1330. https://doi.org/10.3390/app7121330
Chicago/Turabian StyleBaino, Francesco, and Enrica Verné. 2017. "Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity" Applied Sciences 7, no. 12: 1330. https://doi.org/10.3390/app7121330
APA StyleBaino, F., & Verné, E. (2017). Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity. Applied Sciences, 7(12), 1330. https://doi.org/10.3390/app7121330