Current-Fluctuation Mechanism of Field Emitters Using Metallic Single-Walled Carbon Nanotubes with High Crystallinity
Abstract
:1. Introduction
2. Experimental
3. Theory of FE Fluctuation
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Saito, Y.; Uemura, S. Field emission from carbon nanotubes and its application to electron sources. Carbon 2000, 38, 169–182. [Google Scholar] [CrossRef]
- Saito, Y. Carbon nanotube field emitter. J. Nanosci. Nanotechnol. 2003, 3, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Kita, S.; Sakai, Y.; Endo, T.; Sugimoto, W.; Goto, H. Stabilization of field electron emission from carbon nanofibers using ballast resistance. J. Vac. Sci. Technol. B 2012, 30, 31801. [Google Scholar] [CrossRef]
- Qian, L.; Wang, Y.-Q.; Liu, L.; Fan, S.-S. Nanoscale field emission in inert gas under atmospheric pressure. J. Vac. Sci. Technol. B 2010, 28, 562–566. [Google Scholar] [CrossRef]
- Chichibu, S.; Sota, T.; Wada, K.; Nakamura, S. Exciton localization in InGaN quantum well devices. J. Vac. Sci. Technol. B 1998, 16, 2204–2214. [Google Scholar] [CrossRef]
- He, G.; Chikyow, T.; Chen, X.-S.; Chen, H.-S.; Liu, J.-W.; Sun, Z.-Q. Cathodoluminescence and field emission from GaN/MgAl2O4 grown by metalorganic chemical vapor deposition: Substrate-orientation dependence. J. Mater. Chem. C 2013, 1, 238–245. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, W.; Zhang, Y.; Xu, N.; Yan, Y.; Wu, J.; Shen, Y.; Chen, J.; She, J.; Deng, S. A fully-sealed carbon-nanotube cold-cathode terahertz gyrotron. Sci. Rep. 2016, 6, 32936. [Google Scholar] [CrossRef] [PubMed]
- Burtsev, A.A.; Grigorev, Y.A.; Navrotsky, I.A.; Rogovin, V.I.; Sakhadzhi, G.V.; Shumikhin, K.V. Experimental investigation of electron guns for THz microwave vacuum amplifiers. Tech. Phys. Lett. 2016, 42, 543–545. [Google Scholar] [CrossRef]
- Gamzina, D.; Himes, L.G.; Barchfeld, R.; Zheng, Y.; Popovic, B.K.; Paoloni, C.; Choi, E.-M.; Luhmann, N.C., Jr. Nano-CNC machining of sub-THz vacuum electron devices. IEEE Trans. Electron Devices 2016, 63, 4067–4073. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, H.; Zhang, L.; Shu, G.; He, W.; Zhang, J.; Zhang, Q. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation. Phys. Plasmas 2016, 23, 73116. [Google Scholar] [CrossRef] [Green Version]
- Heeger, A.J.; Parker, I.D.; Yang, Y. Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling. Synth. Met. 1994, 67, 23–29. [Google Scholar] [CrossRef]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 1928, 119, 173–181. [Google Scholar] [CrossRef]
- Shimoi, N.; Adriana, L.E.; Tanaka, Y.; Tohji, K. Properties of a field emission lighting plane employing highly crystalline single-walled carbon nanotubes fabricated by simple processes. Carbon 2013, 65, 228–235. [Google Scholar] [CrossRef]
- Garrido, S.B.; Shimoi, N.; Abe, D.; Hojo, T.; Tanaka, Y.; Tohji, K. Planar light source using a phosphor screen with single-walled carbon nanotubes as field emitters. Rev. Sci. Instrum. 2014, 85, 104704. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1997, 382, 54–56. [Google Scholar] [CrossRef]
- Wildoerm, J.W.G.; Venema, L.C.; Rinzler, A.G.; Smalley, R.E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62. [Google Scholar] [CrossRef]
- Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Dai, H.; Hafner, J.H.; Rinzler, A.G.; Colbert, D.T.; Smalley, R.E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147–150. [Google Scholar] [CrossRef]
- Dillon, A.C.; Jones, K.M.; Bekkedahl, T.A.; Kiang, C.H.; Bethune, D.S.; Haben, M.J. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, 377–380. [Google Scholar] [CrossRef]
- Niu, C.; Sichel, E.K.; Hoch, R.; Moy, D.; Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 1997, 70, 1480–1482. [Google Scholar] [CrossRef]
- Shimoi, N.; Abe, D.; Matsumoto, K.; Sato, Y.; Tohji, K. Low-power-consumption flat-panel light-emitting device driven by field-emission electron source using high-crystalline single-walled carbon nanotube. Jpn. J. Appl. Phys. 2017, 56, 07GE01. [Google Scholar] [CrossRef]
- Iwata, S.; Sato, Y.; Nakai, K.; Ogura, S.; Okano, T.; Namura, M.; Kasuya, A.; Tohji, K.; Fukutani, K. Novel method to evaluate the carbon network of single-walled carbon nanotubes by hydrogen physisorption. J. Phys. Chem. C Lett. 2007, 111, 14937–14941. [Google Scholar] [CrossRef]
- Shimoi, N.; Abe, D.; Tanaka, Y.; Tohji, K. A stand-alone flat-plane lighting device in a diode structure employing highly crystalline SWCNTs as field emitters. Diamond Relat. Mater. 2016, 65, 152–157. [Google Scholar] [CrossRef]
- Spindt, C.A.; Brodie, I.; Humphrey, L.; Westerberg, E.R. Physical properties of thin-film field emission cathodes with molybdenum cones. J. Appl. Phys. 1976, 47, 5248–5263. [Google Scholar] [CrossRef]
- Laks, B.; Mills, D.L. Photon emission from slightly roughened tunnel junctions. Phys. Rev. B 1979, 20, 4962. [Google Scholar] [CrossRef]
- Watanabe, J.; Uehara, Y.; Ushioda, S. Multiple-scattering effect of surface-plasmon polaritons in light emission from tunnel junction. Phys. Rev. B 1995, 52, 2860–2867. [Google Scholar] [CrossRef]
- Uehara, Y.; Watanabe, J.; Fujikawa, S.; Ushioda, S. Light-emission mechanism of Si-MOS tunnel junctions. Phys. Rev. B 1995, 51, 2229–2238. [Google Scholar] [CrossRef]
- Hone, D.; Muhlschlegel, B.; Scalapino, D.J. Theory of light emission from small particle tunnel junctions. Appl. Phys. Lett. 1998, 33, 203. [Google Scholar] [CrossRef]
- Shimoi, N.; Tanaka, S.-I. Numerical analysis of electron emission site distribution of carbon nanofibers for field emission properties. ACS Appl. Mater. Interfaces 2012, 5, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Shimoi, N.; Tanaka, S.-I. Numerically optimized bundle size and distribution of carbon nanofibers for a field emitter. Carbon 2010, 48, 905–911. [Google Scholar] [CrossRef]
- Bandaru, P.R. Electrical properties and applications of carbon nanotube structure. J. Nanosci. Nanotechnol. 2007, 7, 1239–1267. [Google Scholar] [CrossRef] [PubMed]
e (elementary charge) | 1.60 × 10−19 C |
A (FE site) | 6.48 × 10−24 m2 |
φB (work function of bulk carbon) | 4.3 eV |
(, h: Planck constant) | 6.58 × 10−16 eV·s |
β (enhancement factor) | 2.56 × 103 |
m (free electron mass) | 9.11 × 10−31 kg |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimoi, N.; Tohji, K. Current-Fluctuation Mechanism of Field Emitters Using Metallic Single-Walled Carbon Nanotubes with High Crystallinity. Appl. Sci. 2017, 7, 1322. https://doi.org/10.3390/app7121322
Shimoi N, Tohji K. Current-Fluctuation Mechanism of Field Emitters Using Metallic Single-Walled Carbon Nanotubes with High Crystallinity. Applied Sciences. 2017; 7(12):1322. https://doi.org/10.3390/app7121322
Chicago/Turabian StyleShimoi, Norihiro, and Kazuyuki Tohji. 2017. "Current-Fluctuation Mechanism of Field Emitters Using Metallic Single-Walled Carbon Nanotubes with High Crystallinity" Applied Sciences 7, no. 12: 1322. https://doi.org/10.3390/app7121322
APA StyleShimoi, N., & Tohji, K. (2017). Current-Fluctuation Mechanism of Field Emitters Using Metallic Single-Walled Carbon Nanotubes with High Crystallinity. Applied Sciences, 7(12), 1322. https://doi.org/10.3390/app7121322