A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics
Abstract
:1. Introduction
2. Structure and Operating Principle
3. Working Frequency and Output Vibrating Amplitude of the Transducer
4. Load-Bearing Capacity of a Single Transducer
4.1. Modeling of Radical Radiation Force
4.2. Modeling of Lateral Radiation Force
5. Fabrication and Measurement
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, S.F.; Wang, X.L.; Yuan, Y.T. Characteristics and application technology of precision machine tool bearings. Bearing 2011, 7, 57–63. [Google Scholar]
- Wang, Z.L.; Ge, Q.J.; Lin, G.C. Investigation on lubricating and cooling technologies for aeroengine mainshaft bearings. Aeroengine 2012, 38, 15–17. [Google Scholar]
- Hikichi, K.; Togo, S.; Esashi, M.; Tanaka, S. Hydroinertia gas bearing for ultra-small gas turbine engine: Influence of iperating temperature for characteristic of hydroinertia gas bearing. J. Jpn. Soc. Tribol. 2010, 55, 292–299. [Google Scholar]
- Mosleh, M.; Bradshaw, K. Role of component configuration in evaluation of accelerated rolling contact fatigue of ball bearings. Wear 2011, 271, 2681–2686. [Google Scholar] [CrossRef]
- Khonsari, M.M.; Booser, E.R. Applied Tribology: Bearing Design and Lubrication; John Wiley & Sons Ltd.: New York, NY, USA, 2008; pp. 1–21. [Google Scholar]
- Wang, X.; Yamaguchi, A. Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors. Part 1: Experiment and theory. Tribol. Int. 2002, 35, 425–433. [Google Scholar] [CrossRef]
- Asada, T.; Saitou, H.; Itou, D. Design of hydrodynamic bearing for mobile hard disk drives. IEEE Trans. Magn. 2005, 41, 741–743. [Google Scholar] [CrossRef]
- Liu, S.J.; Fan, Y.; Di, J.; Liu, Y.J.; Qin, W.; Li, S. Nonlinear control approach of an electromagnetic bearing system. Appl. Mech. Mater. 2014, 538, 387–393. [Google Scholar] [CrossRef]
- Ide, T.; Friend, J.; Nakamura, K.; Ueha, S. A non-contact linear bearing and actuator via ultrasonic levitation. Sens. Actuators A 2007, 135, 740–747. [Google Scholar] [CrossRef]
- Nakamura, K. Noncontact transport of planner object through near field acoustic levitation. J. Acoust. Soc. Jpn. 2013, 69, 603–608. [Google Scholar]
- Liang, Y.D.; Ling, H.; Zhang, Y. Study on the conditions of near-field acoustic levitation. Adv. Mater. Res. 2010, 97–101, 4135–4140. [Google Scholar] [CrossRef]
- Ma, X.; Wang, T.; Wang, S. Research on the transient behavior of near field ultrasonic levitation during lifting up. Acta Acust. 2014, 39, 93–98. [Google Scholar]
- Jia, B.; Chen, C.; Zhao, C. Solution on near-field acoustic levitation force in flexural mode based on ALE methods. Piezoelectr. Acoustoopt. 2013, 35, 80–84. [Google Scholar]
- Kazato, A.; Yoshimoto, S. Study on aerodynamic sliding table using squeeze-gas film effect. Trans. Jpn. Soc. Mech. Eng. 2000, 66, 3462–3468. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Kobayashi, H.; Miyatake, M. Floating characteristics of a squeeze-film bearing for a linear motion guide using ultrasonic vibration. J. Tribol. Int. 2007, 40, 503–511. [Google Scholar] [CrossRef]
- Stolarski, T.A.; Woolliscroft, S.P. Performance of a self-lifting linear air contact. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2007, 221, 1103–1115. [Google Scholar] [CrossRef]
- Stolarski, T.A. Numerical modeling and experimental verification of compressible squeeze film pressure. Tribol. Int. 2010, 43, 356–360. [Google Scholar] [CrossRef]
- Ha, D.N.; Stolarski, T.A.; Yoshimoto, S. An aerodynamic bearing with adjustable geometry and self-lifting capacity. Part 1:self-lift capacity by squeeze film. Proc. Inst. Mech. Eng. Part J: J. Mech. Eng J. Eng. Tribol. 2005, 219, 33–39. [Google Scholar] [CrossRef]
- Stolarski, T.A. Acoustic levitation—A novel alternative to traditional lubrication of contacting surfaces. Tribol. Online 2014, 9, 164–174. [Google Scholar] [CrossRef]
- Stolarski, T.A. Running characteristics of aerodynamic bearing with self-lifting capability at low rotational speed. Adv. Tribol. 2011, 2011. [Google Scholar] [CrossRef]
- Wang, C.; Au, Y.H.J. Study of design parameters for squeeze film air journal bearing—Excitation frequency and amplitude. Mech. Sci. 2011, 2, 147–155. [Google Scholar] [CrossRef]
- Wang, C.; Au, Y.H.J. Levitation characteristics of a squeeze-film air journal bearing at its normal modes. Int. J. Adv. Des. Manuf. Technol. 2012, 60, 1–10. [Google Scholar] [CrossRef]
- Wang, C.; Au, Y.H.J. Comparative performance of squeeze film air journal bearings made of aluminum and copper. Int. J. Adv. Des. Manuf. Technol. 2013, 65, 57–66. [Google Scholar] [CrossRef]
- Zhao, S.; Twiefel, J.; Wallaschek, J. Design and experimental investigations of high power piezoelectric transducers for a novel squeeze film journal bearing. In Proceedings of the Active and Passive Smart Structures and Integrated Systems, San Diego, CA, USA, 8 March 2009; Volume 7288, pp. 1–8.
- Zhao, S.; Mojrzisch, S.; Wallaschek, J. An ultrasonic levitation journal bearing able to control spindle center position. Mech. Syst. Signal Process. 2013, 36, 168–181. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, B.D.; Yang, Z.G. Bearing capacity and anti-friction behavior of ultrasonic vibration bearing. J. Jilin Univ. Technol. 2004, 34, 222–225. [Google Scholar]
- Tian, F.J.; Che, X.H.; Yang, Z.G.; Jiang, B.; Yao, X.F. Structure design of bidirectional support ultrasonic levitation bearing. Opt. Precis. Eng. 2009, 4, 813–818. [Google Scholar]
- Liu, J.J.; Jiang, H.; You, H.; Jiao, X.Y.; Liu, J.F.; Yang, Z.G. Bearing capacity of ultrasonic levitation and pneumatic suspension. J. Xi'an Jiaotong Univ. 2013, 47, 56–60. [Google Scholar]
- Chen, C.; Wang, J.S.; Jia, B.; Li, F. Design of a noncontact spherical bearing based on near-field acoustic levitation. J. Intell. Mater. Syst. Struct. 2014, 25, 755–767. [Google Scholar] [CrossRef]
- Chao, C.; Wang, J.S.; Tong, L. Investigation on structural dynamic design and suspending characteristics of ultrasonic levitation type of gyros. J. Vib. Meas. Diagn. 2013, 33, 1060–1064. [Google Scholar]
- Matsuo, E.; Koike, Y.; Nakamura, K.; Ueha, S.; Hashimoto, Y. Holding characteristics of planar objects suspended by near-field acoustic levitation. Ultrasonics 2000, 38, 60–63. [Google Scholar] [CrossRef]
- Ueha, S.; Hashimoto, Y.; Koike, Y. Non-contact transportation using near-field acoustic levitation. Ultrasonics 2000, 38, 26–32. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Sekine, H.; Miyatake, M.; Yoshimoto, S.; Sekine, H.; Miyatake, M. A non-contact chuck using ultrasonic vibration: Analysis of the primary cause of the holding force acting on a floating object. Proc. Inst. Mech. Eng. C J. Mech. Eng. 2010, 224, 305–313. [Google Scholar] [CrossRef]
- Chu, B.T.; Apfel, R.E. Response to the comments of nyborg and rooney. J. Acoust. Soc. Am. 1984, 3, 1003–1004. [Google Scholar] [CrossRef]
- Bao, G.; Gao, H.; Cheng, T.H.; Xiao, C.F.; Li, H. Investigation of ultrasonic friction reduction and its development in pneumatic system. Chin. Hydraul. Pneum. 2014, 3, 3171–3190. [Google Scholar]
- Qu, J.J.; Zhou, N.N.; Wang, Y.L. Experimental study of air squeeze effect on high-frequency friction contact. Tribol. Int. 2010, 43, 2190–2195. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Quan, Q.; Deng, Z.; Hua, Y.; Wang, Y.; Bai, D. A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics. Appl. Sci. 2016, 6, 280. https://doi.org/10.3390/app6100280
Li H, Quan Q, Deng Z, Hua Y, Wang Y, Bai D. A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics. Applied Sciences. 2016; 6(10):280. https://doi.org/10.3390/app6100280
Chicago/Turabian StyleLi, He, Qiquan Quan, Zongquan Deng, Yuxiang Hua, Yinchao Wang, and Deen Bai. 2016. "A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics" Applied Sciences 6, no. 10: 280. https://doi.org/10.3390/app6100280
APA StyleLi, H., Quan, Q., Deng, Z., Hua, Y., Wang, Y., & Bai, D. (2016). A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics. Applied Sciences, 6(10), 280. https://doi.org/10.3390/app6100280