Tracing Microplastic Pollution Through Animals: A Narrative Review of Bioindicator Approaches
Abstract
1. Introduction
2. Review Methodology
3. Biomonitoring Programs and Microplastic Bioindicators
4. Aquatic Bioindicators
4.1. Bivalves
4.2. Fish
4.3. Barnacles and Anemones
4.4. Crustaceans
4.5. Sponge
4.6. Other Aquatic Organisms
5. Terrestrial Bioindicators
6. Evaluation of Proposed Bioindicators for Microplastic Monitoring
6.1. Ecological Aspects
6.2. Physiological Aspects
6.3. Methodological and Practical Aspects
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, K.H.D. Microplastics in and Near Landlocked Countries of Central and East Asia: A Review of Occurrence and Characteristics. Trop. Aquat. Soil Pollut. 2023, 3, 120–130. [Google Scholar] [CrossRef]
- Caruso, G.; Bergami, E.; Singh, N.; Corsi, I. Plastic occurrence, sources, and impacts in Antarctic environment and biota. Water Biol. Secur. 2022, 1, 100034. [Google Scholar] [CrossRef]
- Abel, S.M.; Wu, F.; Primpke, S.; Gerdts, G.; Brandt, A. Journey to the deep: Plastic pollution in the hadal of deep-sea trenches. Environ. Pollut. 2023, 333, 122078. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty years of microplastic pollution research—What have we learned? Science 2024, 386, eadl2746. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H. Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure. Microplastics 2025, 4, 47. [Google Scholar] [CrossRef]
- Tang, K.H. Combined Toxicity of Microplastics and Antimicrobials on Animals: A Review. Antibiotics 2025, 14, 896. [Google Scholar] [CrossRef]
- Tang, K.H. Effects of Microplastics on Bioavailability, Persistence and Toxicity of Plant Pesticides: An Agricultural Perspective. Agriculture 2025, 15, 356. [Google Scholar] [CrossRef]
- Li, Z.; Junaid, M.; Chen, G.; Wang, J. Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Rev. Aquac. 2022, 14, 1028–1045. [Google Scholar] [CrossRef]
- Tang, K.H. Toxic Effects of Nanoplastics on Animals: Comparative Insights into Microplastic Toxicity. Environments 2025, 12, 429. [Google Scholar] [CrossRef]
- Tang, K.H.D. A review of the toxic effects of microplastics based on studies on mammals and mammalian cell lines. Environ. Sci. Adv. 2024, 3, 1669–1678. [Google Scholar] [CrossRef]
- Pastorino, P.; Barceló, D. Bioindicators selection in the strategies for monitoring microplastic pollution. Ecol. Indic. 2024, 166, 112337. [Google Scholar] [CrossRef]
- Kılıç, E.; Yücel, N. Microplastic occurrence in the gastrointestinal tract and gill of bioindicator fish species in the northeastern Mediterranean. Mar. Pollut. Bull. 2022, 177, 113556. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Hu, C.; Ge, T.; Wang, L.; Xing, J.; He, X.; Zhao, Y. Comparative Evaluation of Analytical Techniques for Quantifying and Characterizing Polyethylene Microplastics in Farmland Soil Samples. Agriculture 2024, 14, 554. [Google Scholar] [CrossRef]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Bouzid, N.; Tassin, B.; Gasperi, J.; Dris, R. Sequential combination of micro-FTIR imaging spectroscopy and pyrolysis-GC/MS for microplastic quantification. Application to river sediments. Anal. Methods 2025, 17, 3781–3792. [Google Scholar] [CrossRef]
- Daoutakou, M.; Kintzios, S. Biosensors for Micro- and Nanoplastics Detection: A Review. Chemosensors 2025, 13, 143. [Google Scholar] [CrossRef]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef]
- Wander, L.; Vianello, A.; Vollertsen, J.; Westad, F.; Braun, U.; Paul, A. Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples. Anal. Methods 2020, 12, 781–791. [Google Scholar] [CrossRef]
- Khanam, M.M.; Uddin, M.K.; Kazi, J.U. Advances in machine learning for the detection and characterization of microplastics in the environment. Front. Environ. Sci. 2025, 13, 1573579. [Google Scholar] [CrossRef]
- de Jourdan, B.; Philibert, D.; Asnicar, D.; Davis, C.W. Microplastic biomonitoring studies in aquatic species: A review & quality assessment framework. Sci. Total Environ. 2024, 957, 177541. [Google Scholar] [CrossRef]
- Dettling, V.; Samadi, S.; Ratti, C.; Fini, J.-B.; Laguionie, C. Can natural history collection specimens be used as aquatic microplastic pollution bioindicators? Ecol. Indic. 2024, 160, 111894. [Google Scholar] [CrossRef]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environ. Pollut. 2021, 270, 116175. [Google Scholar] [CrossRef]
- Savoca, M.S.; Kühn, S.; Sun, C.; Avery-Gomm, S.; Choy, C.A.; Dudas, S.; Hong, S.H.; Hyrenbach, K.D.; Li, T.-H.; Ng, C.K.-Y.; et al. Towards a North Pacific Ocean long-term monitoring program for plastic pollution: A review and recommendations for plastic ingestion bioindicators. Environ. Pollut. 2022, 310, 119861. [Google Scholar] [CrossRef]
- Fossi, M.C.; Pedà, C.; Compa, M.; Tsangaris, C.; Alomar, C.; Claro, F.; Ioakeimidis, C.; Galgani, F.; Hema, T.; Deudero, S.; et al. Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity. Environ. Pollut. 2018, 237, 1023–1040. [Google Scholar] [CrossRef]
- Patra, I.; Huy, D.T.N.; Alsaikhan, F.; Opulencia, M.J.C.; Van Tuan, P.; Nurmatova, K.C.; Majdi, A.; Shoukat, S.; Yasin, G.; Margiana, R.; et al. Toxic effects on enzymatic activity, gene expression and histopathological biomarkers in organisms exposed to microplastics and nanoplastics: A review. Environ. Sci. Eur. 2022, 34, 80. [Google Scholar] [CrossRef]
- Compa, M.; Capó, X.; Alomar, C.; Deudero, S.; Sureda, A. A meta-analysis of potential biomarkers associated with microplastic ingestion in marine fish. Environ. Toxicol. Pharmacol. 2024, 107, 104414. [Google Scholar] [CrossRef] [PubMed]
- Curren, E.; Yu, D.C.Y.; Leong, S.C.Y. From the Seafloor to the Surface: A Global Review of Gastropods as Bioindicators of Marine Microplastics. Water Air Soil Pollut. 2023, 235, 45. [Google Scholar] [CrossRef]
- Carrasco, L.; Jiménez-Mora, E.; Utrilla, M.J.; Pizarro, I.T.; Reglero, M.M.; Rico-San Román, L.; Martin-Maldonado, B. Birds as Bioindicators: Revealing the Widespread Impact of Microplastics. Birds 2025, 6, 10. [Google Scholar] [CrossRef]
- Li, J.; Lusher, A.L.; Rotchell, J.M.; Deudero, S.; Turra, A.; Bråte, I.L.N.; Sun, C.; Shahadat Hossain, M.; Li, Q.; Kolandhasamy, P.; et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 2019, 244, 522–533. [Google Scholar] [CrossRef]
- Savoca, M.S.; Abreo, N.A.; Arias, A.H.; Baes, L.; Baini, M.; Bergami, E.; Brander, S.; Canals, M.; Choy, C.A.; Corsi, I.; et al. Monitoring plastic pollution using bioindicators: A global review and recommendations for marine environments. Environ. Sci. Adv. 2025, 4, 10–32. [Google Scholar] [CrossRef]
- Castillo, N.A.; Swam-Jaramillo, L.M.; Rider, M.M.; Apeti, D.A.; Pisarski, E.C. A 2021 Assessment of Contaminants of Emerging Concern on the Mid-Atlantic Coast; NOAA Technical Memorandum NOS NCCOS 361; NOAA NCCOS Monitoring and Assessment Branch: Silver Spring, MD, USA, 2025.
- Larsen, M.; Hjermann, D. Status and Trend for Heavy Metals (Mercury, Cadmium and Lead) in Fish, Shellfish and Sediment. In OSPAR, 2023: The 2023 Quality Status Report for the Northeast Atlantic; OSPAR Commission: London, UK, 2022. [Google Scholar]
- van Franeker, J.A.; Kühn, S.; Anker-Nilssen, T.; Edwards, E.W.J.; Gallien, F.; Guse, N.; Kakkonen, J.E.; Mallory, M.L.; Miles, W.; Olsen, K.O.; et al. New tools to evaluate plastic ingestion by northern fulmars applied to North Sea monitoring data 2002–2018. Mar. Pollut. Bull. 2021, 166, 112246. [Google Scholar] [CrossRef] [PubMed]
- Valente, T.; Costantini, M.L.; Ventura, D.; Careddu, G.; Ciaralli, L.; Monfardini, E.; Tomassetti, P.; Piermarini, R.; Silvestri, C.; Matiddi, M. Hit the target: A new experimental method to select bioindicators of microplastic ingestion by marine fish. Environ. Res. 2025, 269, 120940. [Google Scholar] [CrossRef] [PubMed]
- French, M.A.; Lipizer, M. Improving data reliability to support marine pollution assessment according to MSFD Descriptor 8 in the European Seas: The contribution of EMODnet Chemistry. Front. Mar. Sci. 2023, 10, 1275097. [Google Scholar] [CrossRef]
- UNEP. Agenda item 7: Implementation of Decision IG 22/7 on IMAP and Articles 7 and 8 of the LBS Protocol. 2017. Available online: https://mcc.jrc.ec.europa.eu/documents/Decision_IG.22-7_IMAP_FINAL.pdf (accessed on 28 December 2025).
- Joyce, H.; Nash, R.; Frias, J.; White, J.; Cau, A.; Carreras-Colom, E.; Kavanagh, F. Monitoring microplastic pollution: The potential and limitations of Nephrops norvegicus. Ecol. Indic. 2023, 154, 110441. [Google Scholar] [CrossRef]
- Moon, Y.; Shim, W.J.; Han, G.M.; Jeong, J.; Cho, Y.; Kim, I.-H.; Kim, M.-S.; Lee, H.-R.; Hong, S.H. What type of plastic do sea turtles in Korean waters mainly ingest? Quantity, shape, color, size, polymer composition, and original usage. Environ. Pollut. 2022, 298, 118849. [Google Scholar] [CrossRef]
- Raufanda, M.S.; Prabowo, R.E.; Nuryanto, A. DNA barcoding of intertidal barnacles as potential bioindicators of microplastic pollution in Seribu Islands and Jakarta Bay, Indonesia. Biodiversitas J. Biol. Divers. 2024, 25, 4664–4676. [Google Scholar] [CrossRef]
- De Witte, B.; Catarino, A.I.; Vandecasteele, L.; Dekimpe, M.; Meyers, N.; Deloof, D.; Pint, S.; Hostens, K.; Everaert, G.; Torreele, E. Feasibility Study on Biomonitoring of Microplastics in Fish Gastrointestinal Tracts. Front. Mar. Sci. 2022, 8, 794636. [Google Scholar] [CrossRef]
- Mor, V.; Singh, W.; Khyalia, P. Potential Bioindicators of Microplastics for Monitoring Microplastic Pollution. In Microplastic Pollution in India and Its Environmental Impacts: Assessment of Ecosystems and Aquatic Environments, Impacts on Human Health, Management and Mitigation; Khyalia, P., Yadav, S., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 193–206. [Google Scholar]
- Multisanti, C.R.; Merola, C.; Perugini, M.; Aliko, V.; Faggio, C. Sentinel species selection for monitoring microplastic pollution: A review on one health approach. Ecol. Indic. 2022, 145, 109587. [Google Scholar] [CrossRef]
- Ding, J.; Sun, C.; He, C.; Li, J.; Ju, P.; Li, F. Microplastics in four bivalve species and basis for using bivalves as bioindicators of microplastic pollution. Sci. Total Environ. 2021, 782, 146830. [Google Scholar] [CrossRef]
- Qu, X.; Su, L.; Li, H.; Liang, M.; Shi, H. Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Sci. Total Environ. 2018, 621, 679–686. [Google Scholar] [CrossRef]
- Su, L.; Cai, H.; Kolandhasamy, P.; Wu, C.; Rochman, C.M.; Shi, H. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 2018, 234, 347–355. [Google Scholar] [CrossRef]
- Woods, M.N.; Stack, M.E.; Fields, D.M.; Shaw, S.D.; Matrai, P.A. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Mar. Pollut. Bull. 2018, 137, 638–645. [Google Scholar] [CrossRef]
- Ward, J.E.; Zhao, S.; Holohan, B.A.; Mladinich, K.M.; Griffin, T.W.; Wozniak, J.; Shumway, S.E. Selective Ingestion and Egestion of Plastic Particles by the Blue Mussel (Mytilus edulis) and Eastern Oyster (Crassostrea virginica): Implications for Using Bivalves as Bioindicators of Microplastic Pollution. Environ. Sci. Technol. 2019, 53, 8776–8784. [Google Scholar] [CrossRef]
- Pastorino, P.; Prearo, M.; Anselmi, S.; Menconi, V.; Bertoli, M.; Dondo, A.; Pizzul, E.; Renzi, M. Use of the Zebra Mussel Dreissena polymorpha (Mollusca, Bivalvia) as a Bioindicator of Microplastics Pollution in Freshwater Ecosystems: A Case Study from Lake Iseo (North Italy). Water 2021, 13, 434. [Google Scholar] [CrossRef]
- Liang, H.; Liu, S.; Sun, S.; Zhang, L.; Yu, M.; Tang, Y. The relationship of microplastic pollution between seawater and oyster: A holistic perspective for bioindicator selection. Ocean Coast. Manag. 2026, 273, 108052. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Z.; Li, W.; Hu, C.; Chen, Z.; Li, J.; Lan, W. From Spat to Adult: Investigating Microplastic Accumulation in Crassostrea hongkongensis of Varying Sizes. Environ. Sci. Technol. 2025, 59, 18372–18380. [Google Scholar] [CrossRef]
- Craig, C.A.; Fox, D.W.; Zhai, L.; Walters, L.J. In-situ microplastic egestion efficiency of the eastern oyster Crassostrea virginica. Mar. Pollut. Bull. 2022, 178, 113653. [Google Scholar] [CrossRef] [PubMed]
- Stamataki, N.; Hatzonikolakis, Y.; Tsiaras, K.; Tsangaris, C.; Petihakis, G.; Sofianos, S.; Triantafyllou, G. Modelling mussel (Mytilus spp.) microplastic accumulation. Ocean Sci. 2020, 16, 927–949. [Google Scholar] [CrossRef]
- Koutsikos, N.; Koi, A.M.; Zeri, C.; Tsangaris, C.; Dimitriou, E.; Kalantzi, O.-I. Exploring microplastic pollution in a Mediterranean river: The role of introduced species as bioindicators. Heliyon 2023, 9, e15069. [Google Scholar] [CrossRef]
- Dragun, Z.; Tepić, N.; Krasnići, N.; Teskeredžić, E. Accumulation of metals relevant for agricultural contamination in gills of European chub (Squalius cephalus). Environ. Sci. Pollut. Res. 2016, 23, 16802–16815. [Google Scholar] [CrossRef]
- Pacini, N.; Abate, V.; Brambilla, G.; De Felip, E.; De Filippis, S.P.; De Luca, S.; di Domenico, A.; D’Orsi, A.; Forte, T.; Fulgenzi, A.R.; et al. Polychlorinated dibenzodioxins, dibenzofurans, and biphenyls in fresh water fish from Campania Region, southern Italy. Chemosphere 2013, 90, 80–88. [Google Scholar] [CrossRef]
- Rios-Fuster, B.; Alomar, C.; Compa, M.; Guijarro, B.; Deudero, S. Anthropogenic particles ingestion in fish species from two areas of the western Mediterranean Sea. Mar. Pollut. Bull. 2019, 144, 325–333. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona, L.M.F. An overview on properties and applications of poly(butylene adipate-co-terephthalate)–PBAT based composites. Polym. Eng. Sci. 2019, 59, E7–E15. [Google Scholar] [CrossRef]
- Li, J.; Qu, X.; Su, L.; Zhang, W.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in mussels along the coastal waters of China. Environ. Pollut. 2016, 214, 177–184. [Google Scholar] [CrossRef]
- Ferreira, G.V.B.; Justino, A.K.S.; Martins, J.R.; Eduardo, L.N.; Schmidt, N.; Albignac, M.; Braga, A.C.; Costa, P.A.S.; Fischer, L.G.; ter Halle, A.; et al. Lanternfish as bioindicator of microplastics in the deep sea: A spatiotemporal analysis using museum specimens. J. Hazard. Mater. 2025, 487, 137125. [Google Scholar] [CrossRef]
- Ding, J.; Ju, P.; Ran, Q.; Li, J.; Jiang, F.; Cao, W.; Zhang, J.; Sun, C. Elder fish means more microplastics? Alaska pollock microplastic story in the Bering Sea. Sci. Adv. 2023, 9, eadf5897. [Google Scholar] [CrossRef]
- Xu, X.Y.; Wong, C.Y.; Tam, N.F.Y.; Liu, H.M.; Cheung, S.G. Barnacles as potential bioindicator of microplastic pollution in Hong Kong. Mar. Pollut. Bull. 2020, 154, 111081. [Google Scholar] [CrossRef] [PubMed]
- Chiani, M.M.; Rasta, M.; Taleshi, M.S.; Elmi, F. The role of organisms’ size in microplastic pollution monitoring: Insights from Mytilaster lineatus and Amphibalanus improvisus. Mar. Environ. Res. 2025, 204, 106863. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, E.E.; Tanoiri, H.; Yokota, M. Temporal variability of microplastics contaminant ingested by striped barnacles Amphibalanus amphitrite in tidal flat of the Tsurumi River estuary, Tokyo Bay Area, Japan. Reg. Stud. Mar. Sci. 2025, 85, 104127. [Google Scholar] [CrossRef]
- Aksun Tümerkan, E.T.; Köse, E.; Aksu, S.; Mol, O.; Kantamaneni, K.; Başkurt, S.; Çınar, E.; Emiroğlu, Ö. Beadlet anemone: A novel bio-indicator of microplastic pollution in the marine environment. J. Environ. Manag. 2024, 349, 119538. [Google Scholar] [CrossRef]
- Morais, L.M.S.; Sarti, F.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T.; Martinelli Filho, J.E. The sea anemone Bunodosoma cangicum as a potential biomonitor for microplastics contamination on the Brazilian Amazon coast. Environ. Pollut. 2020, 265, 114817. [Google Scholar] [CrossRef]
- Savage, G.; Porter, A.; Simpson, S.D. Uptake of microplastics by the snakelocks anemone (Anemonia viridis) is commonplace across environmental conditions. Sci. Total Environ. 2022, 836, 155144. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Cole, M.; Coppock, R.L.; Lewis, C.N.; Miller, R.Z.; Watts, A.J.R.; Wilson-McNeal, A.; Wright, S.L.; Galloway, T.S. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ. Pollut. 2020, 265, 114721. [Google Scholar] [CrossRef]
- Xu, X.; He, L.; Huang, F.; Jiang, S.; Dai, Z.; Sun, R.; Li, C. Fiddler crabs (Tubuca arcuata) as bioindicators of microplastic pollution in mangrove sediments. Chemosphere 2024, 364, 143112. [Google Scholar] [CrossRef]
- Pastorino, P.; Anselmi, S.; Zanoli, A.; Esposito, G.; Bondavalli, F.; Dondo, A.; Pucci, A.; Pizzul, E.; Faggio, C.; Barceló, D.; et al. The invasive red swamp crayfish (Procambarus clarkii) as a bioindicator of microplastic pollution: Insights from Lake Candia (northwestern Italy). Ecol. Indic. 2023, 150, 110200. [Google Scholar] [CrossRef]
- Joyce, H.; Frias, J.; Kavanagh, F.; Lynch, R.; Pagter, E.; White, J.; Nash, R. Plastics, prawns, and patterns: Microplastic loadings in Nephrops norvegicus and surrounding habitat in the North East Atlantic. Sci. Total Environ. 2022, 826, 154036. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Peer, N.; Sershen; Rajkaran, A. Microplastic abundance in urban vs. peri-urban mangroves: The feasibility of using invertebrates as biomonitors of microplastic pollution in two mangrove dominated estuaries of southern Africa. Mar. Pollut. Bull. 2023, 196, 115657. [Google Scholar] [CrossRef] [PubMed]
- Girard, E.B.; Fuchs, A.; Kaliwoda, M.; Lasut, M.; Ploetz, E.; Schmahl, W.W.; Wörheide, G. Sponges as bioindicators for microparticulate pollutants? Environ. Pollut. 2021, 268, 115851. [Google Scholar] [CrossRef]
- Celis-Hernández, O.; Ávila, E.; Ward, R.D.; Rodríguez-Santiago, M.A.; Aguirre-Téllez, J.A. Microplastic distribution in urban vs pristine mangroves: Using marine sponges as bioindicators of environmental pollution. Environ. Pollut. 2021, 284, 117391. [Google Scholar] [CrossRef]
- Modica, L.; Lanuza, P.; García-Castrillo, G. Surrounded by microplastic, since when? Testing the feasibility of exploring past levels of plastic microfibre pollution using natural history museum collections. Mar. Pollut. Bull. 2020, 151, 110846. [Google Scholar] [CrossRef] [PubMed]
- Sucharitakul, P.; Pitt, K.A.; Welsh, D.T. Assessment of microplastics in discharged treated wastewater and the utility of Chrysaora pentastoma medusae as bioindicators of microplastics. Sci. Total Environ. 2021, 790, 148076. [Google Scholar] [CrossRef]
- Iliff, S.M.; Wilczek, E.R.; Harris, R.J.; Bouldin, R.; Stoner, E.W. Evidence of microplastics from benthic jellyfish (Cassiopea xamachana) in Florida estuaries. Mar. Pollut. Bull. 2020, 159, 111521. [Google Scholar] [CrossRef]
- González-Paredes, D.; Ariel, E.; David, M.F.; Ferrando, V.; Marsh, H.; Hamann, M. Gastrointestinal transit times in juvenile green turtles: An approach for assessing digestive motility disorders. J. Exp. Mar. Biol. Ecol. 2021, 544, 151616. [Google Scholar] [CrossRef]
- Fukuoka, T.; Yamane, M.; Kinoshita, C.; Narazaki, T.; Marshall, G.J.; Abernathy, K.J.; Miyazaki, N.; Sato, K. The feeding habit of sea turtles influences their reaction to artificial marine debris. Sci. Rep. 2016, 6, 28015. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.M. Quantities of Marine Debris Ingested by Sea Turtles: Global Meta-Analysis Highlights Need for Standardized Data Reporting Methods and Reveals Relative Risk. Environ. Sci. Technol. 2018, 52, 12026–12038. [Google Scholar] [CrossRef] [PubMed]
- Meacci, S.; Orsini, M.; Pittura, L.; Nardi, A.; Gorbi, S.; Regoli, F.; Abulebda, A.M.A.; Riolo, P.; Ruschioni, S. A pilot study to assess carabids (Coleoptera: Carabidae) as potential bioindicators of microplastics contamination in soils. Environ. Sustain. Indic. 2025, 27, 100729. [Google Scholar] [CrossRef]
- Kosewska, A.; Kędzior, R.; Nietupski, M.; Borkowski, J. Epigeic Carabids (Coleoptera, Carabidae) as Bioindicators in Different Variants of Scots Pine Regeneration: Implication for Forest Landscape Management. Sustainability 2023, 15, 13322. [Google Scholar] [CrossRef]
- Wayman, C.; Fernández-Piñas, F.; Fernández-Valeriano, R.; García-Baquero, G.A.; López-Márquez, I.; González-González, F.; Rosal, R.; González-Pleiter, M. The potential use of birds as bioindicators of suspended atmospheric microplastics and artificial fibers. Ecotoxicol. Environ. Saf. 2024, 282, 116744. [Google Scholar] [CrossRef]
- Thibault, M.; Hoarau, L.; Lebreton, L.; Le Corre, M.; Barret, M.; Cordier, E.; Ciccione, S.; Royer, S.-J.; Ter Halle, A.; Ramanampamonjy, A.; et al. Do loggerhead sea turtle (Caretta caretta) gut contents reflect the types, colors and sources of plastic pollution in the Southwest Indian Ocean? Mar. Pollut. Bull. 2023, 194, 115343. [Google Scholar] [CrossRef]
- Bendell, L.I.; LeCadre, E.; Zhou, W. Use of sediment dwelling bivalves to biomonitor plastic particle pollution in intertidal regions; A review and study. PLoS ONE 2020, 15, e0232879. [Google Scholar] [CrossRef] [PubMed]
- Scott, N.; Porter, A.; Santillo, D.; Simpson, H.; Lloyd-Williams, S.; Lewis, C. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar. Pollut. Bull. 2019, 146, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Baumsteiger, J.; O’Rear, T.A.; Cook, J.D.; Manfree, A.D.; Moyle, P.B. Factors affecting distribution and abundance of jellyfish medusae in a temperate estuary: A multi-decadal study. Biol. Invasions 2018, 20, 105–119. [Google Scholar] [CrossRef]
- Ory, N.C.; Sobral, P.; Ferreira, J.L.; Thiel, M. Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre. Sci. Total Environ. 2017, 586, 430–437. [Google Scholar] [CrossRef]
- Roch, S.; Friedrich, C.; Brinker, A. Uptake routes of microplastics in fishes: Practical and theoretical approaches to test existing theories. Sci. Rep. 2020, 10, 3896. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Fang, J.K.-H.; Wong, C.-Y.; Cheung, S.-G. Experimental accumulation of microplastics in acorn barnacle Amphibalanus amphitrite and its use in estimating microplastic concentration in coastal waters. Front. Mar. Sci. 2023, 9, 1081329. [Google Scholar] [CrossRef]
- Janßen, A.; Wizemann, A.; Klicpera, A.; Satari, D.Y.; Westphal, H.; Mann, T. Sediment Composition and Facies of Coral Reef Islands in the Spermonde Archipelago, Indonesia. Front. Mar. Sci. 2017, 4, 144. [Google Scholar] [CrossRef]
- Pilcher, N.J.; Rezaie-Atagholipour, M.; Ghavasi, M.; Dakhteh, S.M.; Shokri, M.R.; Javidkar, M.; Jensen, M. Population structure of green sea turtles at a foraging ground in the southeastern Persian Gulf. Front. Mar. Sci. 2025, 12, 1572931. [Google Scholar] [CrossRef]
- Baak, J.E.; Linnebjerg, J.F.; Barry, T.; Gavrilo, M.V.; Mallory, M.L.; Price, C.; Provencher, J.F. Plastic ingestion by seabirds in the circumpolar Arctic: A review. Environ. Rev. 2020, 28, 506–516. [Google Scholar] [CrossRef]
- Collard, F.; Ask, A. Plastic ingestion by Arctic fauna: A review. Sci. Total Environ. 2021, 786, 147462. [Google Scholar] [CrossRef]
- Trevail, A.M.; Gabrielsen, G.W.; Kühn, S.; Van Franeker, J.A. Elevated levels of ingested plastic in a high Arctic seabird, the northern fulmar (Fulmarus glacialis). Polar Biol. 2015, 38, 975–981. [Google Scholar] [CrossRef]
- Tulatz, F.; Gabrielsen, G.W.; Bourgeon, S.; Herzke, D.; Krapp, R.; Langset, M.; Neumann, S.; Lippold, A.; Collard, F. Implications of Regurgitative Feeding on Plastic Loads in Northern Fulmars (Fulmarus glacialis): A Study from Svalbard. Environ. Sci. Technol. 2023, 57, 3562–3570. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Benjaminsen, S.C.; Herzke, D.; Husabø, E.; Sagerup, K.; Tulatz, F.; Gabrielsen, G.W. Life starts with plastic: High occurrence of plastic pieces in fledglings of northern fulmars. Mar. Pollut. Bull. 2024, 202, 116365. [Google Scholar] [CrossRef]
- Beyer, J.; Green, N.W.; Brooks, S.; Allan, I.J.; Ruus, A.; Gomes, T.; Bråte, I.L.N.; Schøyen, M. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. Mar. Environ. Res. 2017, 130, 338–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Geng, Y.; Zhou, W.; Shao, X.; Lin, H.; Zhou, Y. Development of a multi-spectroscopy method coupling μ-FTIR and μ-Raman analysis for one-stop detection of microplastics in environmental and biological samples. Sci. Total Environ. 2024, 917, 170396. [Google Scholar] [CrossRef] [PubMed]





| Study/Location | Animal Studied | Microplastic Abundance & Characteristics | Relationship with Environment | Bioindicator Implication |
|---|---|---|---|---|
| Lower trophic level—bivalves | ||||
| Qingdao, China [43] | Scallop (Chlamys farreri), mussel (Mytilus galloprovincialis), oyster (Crassostrea gigas), clam (Ruditapes philippinarum) | 0.5–3.3 items/ind.; fibers dominant; PVC & rayon common; 7–5000 µm (size) | Clams correlated with sediment polymers; mussels correlated with water polymers | Clams suitable for sediment microplastics; mussels better for water microplastics |
| Global review of field and laboratory studies [29] | Mussels | 0.05–259 items/g; microplastics ≥ 5 µm; dominant small size ranges (<1 mm) | Strong similarity in morphotype and polymer with water | Mussels reflect ambient microplastic pollution |
| 25 coastal sites, China [44] | Mussels (M. edulis, Perna viridis) | Fibers dominant in water and mussels; more likely for smaller microplastics to be ingested; sizes of 0.25 to 1 mm dominant (48–76% of the total) | Strong positive linear relationship between microplastic levels in seawater and in mussels | Consistent, quantitative correlation supports mussels as bioindicators |
| 22 coastal sites, China [58] | Mussels (M. edulis) | 0.9–4.6 items g−1 and 1.5–7.6 items individual−1, with higher levels in wild mussels than in farmed ones; <250 µm in diameter dominant (17–79%); fibers most common | Microplastic loads in mussels closely associated with environmental contamination levels, particularly the degree of surrounding human activity | Clear linkage between mussel burdens and environmental contamination |
| Laboratory ingestion studies [46] | Mussels (M. edulis) | Uptake reached 95% of the maximum ingestion rate (~5227 fibers h−1 at 13 fibers mL−1; 71% fibers were rejected as pseudofeces; average length of 459 ± 2.25 µm | Exposure to microplastics reduced mussel filtration rates, but mussel uptake and rejection dynamics are environmentally relevant | Quantifiable relationship between microplastic level and uptake; mussels as integrators of microplastics rather than direct quantitative proxies |
| Laboratory ingestion studies [47] | Eastern Oysters (Crassostrea virginica), Blue Mussels (M. edulis) | Size-selective ingestion; high rejection of large particles/fibers (up to 98% for the largest); 19–1000 µm for PS microsphere and 75–1075 µm (length) × 30 µm (diameter) for nylon microfibers | Uptake not proportional to exposure because ingestion, rejection (pseudofeces), and egestion varied with particle size and shape | Internal microplastic burdens do not reliably mirror environmental conditions, limiting effectiveness as bioindicators |
| Lake Iseo, Italy [48] | Zebra Mussel (D. polymorpha) | Higher microplastic loads near wastewater treatment plant; PET dominant; 0.5–1.0 µm in diameter highest retention efficiency | Microplastic abundance decreases with distance from source | Effective freshwater microplastic bioindicator |
| Yangtze River Basin, China [45] | Asian Clam (Corbicula fluminea) | 0.3–4.9 items/g; fibers dominant; microplastics closer to sediment patterns; 0.25–1 mm in diameter dominant | Strong correlation with sediment and water | Asian Clam suitable sediment-focused bioindicator |
| Shandong, China [49] | Oyster (C. gigas) | No correlation with seawater abundance; distinct microplastic features; median particle size < 600 µm; fiber and fragment predominant | Influenced by growth, egestion, environment | Oyster less reliable as microplastic bioindicator |
| South Korea nationwide [22] | Oyster (C. gigas), mussel (M. edulis), Manila Clam (R. philippinarum) | High detection frequency; similar microplastic features to seawater; particles < 300 µm dominant; fragments most common | Characteristics (not abundance) aligned with water | Supports bivalves as qualitative bioindicators |
| Higher trophic level—fish (from low to high trophic levels) | ||||
| Urban river, Athens (Greece) [53] | Introduced chub (Squalius vardarensis) | Microplastics in ~35% of fish; mean 1.7 ± 0.2 items ind−1; polymers mainly PE, polyvinyl alcohol, PP; mean dimension length of 2.55 mm | Microplastic occurrence reflected moderate water contamination; linked to urban runoff and riverine inputs | Widely distributed, abundant, and generalist species suitable as freshwater microplastic bioindicator |
| Catalan coast, Spain [56] | Bogue (Boops boops) | Microplastics in 46% of samples; 0–6 items ind−1; mainly blue fragments (0.1–0.5 mm); PP dominant; sizes < 3 mm dominant | Higher microplastic ingestion near urbanized, industrialized coastal areas; proximity to coastline increased exposure | Reflects spatial gradients of coastal microplastic pollution; useful for nearshore monitoring |
| Museum specimens, Brazil [59] | Lanternfishes (Myctophidae), including Diaphus dumerilii | Microplastics in 55% of specimens; mean 0.95 items individual−1; sizes 21–4982 μm; fibers and fragments common; PE dominant | Microplastic ingestion increased over time and varied with migratory behavior and depth; upper mesopelagic migrants most exposed | Strong candidates for deep-sea bioindication due to abundance, distribution, and trophic role, though retention and selectivity remain uncertain |
| Northeastern Mediterranean [12] | Commercial fish species (M. barbatus, Mullus surmuletus, Mugil cephalus, and Saurida undosquamis) | Highest abundances occurred in the gut of M. cephalus from the Asi River estuary; most particles were black fibers smaller than 1 mm, with PE as the dominant polymer | Microplastic abundance in fish gills closely reflected surrounding environmental contamination, while gut burdens were additionally shaped by species-specific traits such as habitat use, feeding strategy, and particle characteristics | Gill-associated microplastics provide a particularly direct signal of ambient environmental contamination, enabling these fish species as bioindicators |
| Bering Sea [60] | Alaska pollock (Gadus chalcogrammus) | Microplastics detected in 85% of samples; over one-third ingested particles were 100–500 µm; older fish contained larger microplastics with more diverse polymer types | Microplastic features linked to those present in surrounding seawater; | Alaska pollock can reflect regional microplastic contamination over extended spatial scales; age-related effects highlight the need for age-standardized sampling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tang, K.H.D. Tracing Microplastic Pollution Through Animals: A Narrative Review of Bioindicator Approaches. Appl. Sci. 2026, 16, 1413. https://doi.org/10.3390/app16031413
Tang KHD. Tracing Microplastic Pollution Through Animals: A Narrative Review of Bioindicator Approaches. Applied Sciences. 2026; 16(3):1413. https://doi.org/10.3390/app16031413
Chicago/Turabian StyleTang, Kuok Ho Daniel. 2026. "Tracing Microplastic Pollution Through Animals: A Narrative Review of Bioindicator Approaches" Applied Sciences 16, no. 3: 1413. https://doi.org/10.3390/app16031413
APA StyleTang, K. H. D. (2026). Tracing Microplastic Pollution Through Animals: A Narrative Review of Bioindicator Approaches. Applied Sciences, 16(3), 1413. https://doi.org/10.3390/app16031413
