Effects of Graded Crude Protein Levels Under Fixed Amino Acid Supplementation on Growth Metabolism, Slaughter Quality, Nitrogen Emission, and Breeding Efficiency of Small White-Feather Broilers
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animal Management
2.3. Sample Collection and Chemical Analysis
2.4. Calculations and Statistical Analysis
3. Results
3.1. Effects of Growth Performance
3.2. Effects of Slaughter Performance and Serum Index
3.3. Analysis of Economic Benefits and Fecal Nitrogen Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CP | Crude protein |
| ME | Metabolizable energy |
| F/G | Feed-to-gain ratio |
| CNY | Chinese Yuan |
| BWG | Body weight gain |
| FI | Feed intake |
| FPW | Feed protein consumed per unit of weight gain |
References
- Zhou, Z.; Cai, D.; Zhang, Z.; Cai, B.; Yang, X.; Kong, S.; Wu, R.; Lin, D.; Yuan, R.; Mo, Y.; et al. Metabolomic lipidomic and transcriptomic reveal meat quality differences among hybrid, indigenous and commercial broiler. LWT 2024, 209, 116765. [Google Scholar] [CrossRef]
- Kong, S.; Cai, X.; Cai, B.; Xian, Y.; Zhou, Z.; Cai, D.; Yang, X.; Lin, D.; Nie, Q. Genomic and transcriptomic analyses unveil the genetic basis of green shank trait in small white-feather chickens. Poult. Sci. 2025, 104, 104912. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Z.; Zhang, Z.; Zheng, X.; Sun, Y.; Guo, S.; Li, Y.; Yang, X.; Kong, S.; Cai, D.; et al. Indigenous broilers in crossbreeding: Impacts on meat quality and candidate gene screening. Poult. Sci. 2025, 104, 105245. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Rochell, S.J.; Kriseldi, R.; Silva, M.; Greiner, L.; Williams, C.; Matton, B.; Anderson, A.; Erf, G.F.; Park, E.; et al. Recent advances in protein and amino acid nutritional dynamics in relation to performance, health, welfare, and cost of production. Poult. Sci. 2025, 104, 104852. [Google Scholar] [CrossRef]
- Salem, S.M.; Nguyen, L.; Mohamed, T.I.; Orma, O.A.; Davis, D.A. Efficacy of crystalline amino acids supplementation in reduction of intact protein level in channel catfish Ictalurus punctatus diets. Anim. Feed. Sci. Technol. 2022, 292, 115428. [Google Scholar] [CrossRef]
- Song, M.Q.; Yu, Q.R.; Li, E.C.; Song, Y.; Cai, X.Y.; Huang, Y.X.; Qin, C.J.; Wang, X.D.; Qin, J.G.; Chen, L.Q. Leucine improves dietary protein use efficiency by regulating protein synthesis by activating amino acid transporters and the mTORC1 pathways in Chinese mitten crab (Eriocheir sinensis). Aquaculture 2024, 581, 740423. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, S.; Zhang, Y.; Zhang, Y.; Wang, J.; Liu, Z.; Yang, K. Benzoic acid supplementation improves the growth performance, nutrient digestibility and nitrogen metabolism of weaned lambs. Front. Vet. Sci. 2024, 11, 1351394. [Google Scholar] [CrossRef]
- De Rauglaudre, T.; Méda, B.; Fontaine, S.; Lambert, W.; Fournel, S.; Létourneau-Montminy, M.-P. Meta-analysis of the effect of low-protein diets on the growth performance, nitrogen excretion, and fat deposition in broilers. Front. Anim. Sci. 2023, 4, 1214076. [Google Scholar] [CrossRef]
- Dunmire, K.M.; Lee, J.; Haydon, K.; Stark, C.R.; Paulk, C.B. Influence of dietary fat and crystalline amino acid inclusion on broiler diet formulation and subsequent pellet quality. J. Appl. Poult. Res. 2024, 33, 100386. [Google Scholar] [CrossRef]
- NY/T33-2004; Feeding Standard of Chicken. The National Standards of the People’s Republic of China: Beijing, China, 2004.
- GB/T 6432-2018; Determination of Crude Protein in Feeds—Kjeldahl Method. The National Standards of the People’s Republic of China: Beijing, China, 2018.
- GB/T 6436-201; Determination of Calcium in Feeds. The National Standards of the People’s Republic of China: Beijing, China, 2018.
- GB/T 18246-2019; Determination of Amino Acids in Feeds. The National Standards of the People’s Republic of China: Beijing, China, 2019.
- Liu, H.; Xu, K.; Wang, H.; Lin, H.; Yang, X.; Wang, X.; Zhao, J.; Ma, B.; Shu, Q.; Lu, Y.; et al. Effects of different forms of amino acid supplementation on the performance and intestinal barrier function of laying hens fed a low-protein diet. Poult. Sci. 2024, 103, 104375. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, G.; Chen, D.; Zheng, P.; Yu, J.; He, J.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; et al. Dietary protein levels and amino acid supplementation patterns alter the composition and functions of colonic microbiota in pigs. Anim. Nutr. 2020, 6, 143–151. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Cai, Y.; Tang, X.; Li, X.; Cao, S.; Xu, L.; Xiao, Y.; Li, D.; Zhong, G.; Zeng, P.; et al. Changes in growth performance, gene expressions related to protein absorption and hepatic metabolism of triploid crucian carp (Carassius carassius triploid) caused by dietary protein level. Aquacult. Rep. 2024, 35, 102023. [Google Scholar] [CrossRef]
- Hofmann, P.; Siegert, W.; Naranjo, V.D.; Rodehutscord, M. Effects of supplemented nonessential amino acids and nonprotein nitrogen on growth and nitrogen excretion characteristics of broiler chickens fed diets with very low crude protein concentrations. Poult. Sci. 2020, 99, 6848–6858. [Google Scholar] [CrossRef] [PubMed]
- Herring, C.M.; Bazer, F.W.; Wu, G. Amino acid nutrition for optimum growth, development, reproduction, and health of zoo animals. In Amino Acids in Nutrition and Health; Advances in experimental medicine and biology; Wu, G., Ed.; Springer: Cham, Switzerland, 2021; Volume 1285, pp. 233–253. ISBN 978-3-030-54461-4. [Google Scholar]
- Zhu, X.; Jiao, J.; Zhou, C.; Tang, S.; Wang, M.; Kang, J.; Han, X.; Tan, Z. Effects of dietary methionine and lysine supplementation on nutrients digestion, serum parameters and mRNA expression of related amino acid sensing and transporting genes in growing goats. Small Rumin. Res. 2018, 166, 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, S.Y.; Liu, M.; Ma, Y.X. Effects of graded levels of true ileal digestible threonine on performance, serum parameters and immune function of 10–25 kg pigs. Anim. Feed. Sci. Technol. 2006, 129, 264–278. [Google Scholar] [CrossRef]
- Rakhshandeh, A.; De Lange, C.F.M.; Htoo, J.K.; Gheisari, A.; Rakhshandeh, A.R. Immune system stimulation increases the plasma cysteine flux and whole-body glutathione synthesis rate in starter pigs1. J. Anim. Sci. 2019, 97, 3871–3881. [Google Scholar] [CrossRef]
- Macelline, S.P.; Kidd, M.T.; Chrystal, P.V.; Toghyani, M.; Selle, P.H.; Liu, S.Y. The influence of non-bound amino acid inclusions and starch-protein digestive dynamics on growth performance of broiler chickens offered wheat-based diets with two crude protein concentrations. Anim. Nutr. 2023, 15, 399–408. [Google Scholar] [CrossRef]
- Bean-Hodgins, L.; Mohammadigheisar, M.; Edwards, A.M.; Kiarie, E.G. Comparative impact of conventional and alternative gut health management programs on plasma and tibia attributes in broiler chickens raised in commercial and research settings. Can. J. Anim. Sci. 2024, 104, 466–476. [Google Scholar] [CrossRef]
- Cazaban, C.; Masferrer, N.M.; Pascual, R.D.; Espadamala, M.N.; Costa, T.; Gardin, Y. Proposed bursa of fabricius weight to body weight ratio standard in commercial broilers. Poul Sci. 2015, 94, 2088. [Google Scholar] [CrossRef]
- Alvarenga, L.; Kemp, J.A.; Baptista, B.G.; Ribeiro, M.; Lima, L.S.; Mafra, D. Production of toxins by the gut microbiota: The role of dietary protein. Curr. Nutr. Rep. 2024, 13, 340–350. [Google Scholar] [CrossRef]
- Khodadadi, M.; Masoumi, A.; Sadeghi, M. Drying, a practical technology for reduction of poultry litter (environmental) pollution: Methods and their effects on important parameters. Poult. Sci. 2024, 103, 104277. [Google Scholar] [CrossRef]
- Liu, M.; Geng, S.; Wang, Q.; Mi, J.; Zhao, L.; Zhang, J.; Ji, C.; Wang, H.; Ma, Q.; Huang, S. Using low-protein diet in egg production for win-win of productivity and environmental benefits should be prudent: Evidence from pilot test. Sci. Total Environ. 2024, 912, 169148. [Google Scholar] [CrossRef]

| Items | D 1~21 | D 21~42 | ||||||
|---|---|---|---|---|---|---|---|---|
| Group 1 (CP 18%) | Group 2 (CP 19%) | Group 3 (CP 20%) | Group 4 (CP 21%) | Group 1 (CP 16%) | Group 2 (CP 17%) | Group 3 (CP 18%) | Group 4 (CP 19%) | |
| Corn | 70.56 | 66.94 | 63.34 | 59.72 | 76.73 | 73.16 | 69.69 | 66.02 |
| Soybean meal (46%) | 21.76 | 24.90 | 28.03 | 31.16 | 13.70 | 16.80 | 19.80 | 23.00 |
| Wheat bran | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
| Corn gluten meal (58%) | 2.00 | 2.00 | 2.00 | 2.00 | 4.00 | 4.00 | 4.00 | 4.00 |
| Stone powder | 1.76 | 1.79 | 1.81 | 1.84 | 1.63 | 1.65 | 1.68 | 1.70 |
| Calcium hydrogen phosphate | 0.65 | 0.60 | 0.54 | 0.49 | 0.51 | 0.46 | 0.40 | 0.35 |
| Soybean oil | 0.42 | 0.92 | 1.43 | 1.94 | 0.60 | 1.10 | 1.60 | 2.10 |
| Salt | 0.35 | 0.35 | 0.35 | 0.35 | 0.33 | 0.33 | 0.33 | 0.33 |
| Premix 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Lys | 0.21 | 0.14 | 0.08 | 0.02 | 0.28 | 0.22 | 0.16 | 0.10 |
| Met | 0.25 | 0.23 | 0.21 | 0.18 | 0.20 | 0.18 | 0.16 | 0.14 |
| Thr | 0.14 | 0.11 | 0.07 | 0.04 | 0.17 | 0.13 | 0.10 | 0.06 |
| Total (%) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Nutrient composition 2 | ||||||||
| Metabolizable energy ME/(MJ/kg) | 12.34 | 12.34 | 12.34 | 12.34 | 12.76 | 12.76 | 12.76 | 12.76 |
| Crude protein, CP | 18.00 | 19.00 | 20.00 | 21.00 | 16.00 | 17.00 | 18.00 | 19.00 |
| Dig. Lys | 0.98 | 0.98 | 0.98 | 0.98 | 0.90 | 0.90 | 0.90 | 0.90 |
| Dig. Met | 0.52 | 0.51 | 0.50 | 0.49 | 0.46 | 0.45 | 0.44 | 0.43 |
| Dig. Met + Cys | 0.76 | 0.76 | 0.76 | 0.76 | 0.68 | 0.68 | 0.68 | 0.68 |
| Dig. Thr | 0.68 | 0.68 | 0.68 | 0.68 | 0.64 | 0.64 | 0.64 | 0.64 |
| Calcium, Ca | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 0.90 | 0.90 | 0.90 |
| Total phosphorus, TP | 0.45 | 0.45 | 0.45 | 0.45 | 0.40 | 0.40 | 0.40 | 0.40 |
| Item | Group 1 | Group 2 | Group 3 | Group 4 | SEM | p-Value | |
|---|---|---|---|---|---|---|---|
| 1~21 d | BWG (g) | 395 b | 394 b | 422 a | 407 ab | 16 | 0.0212 |
| FI (g) | 688 | 662 | 704 | 652 | 48 | 0.2701 | |
| F/G (g/g) | 1.75 a | 1.68 ab | 1.66 ab | 1.60 b | 0.07 | 0.0203 | |
| FPW (g/g) | 0.31 c | 0.31 bc | 0.32 ab | 0.33 a | 0.01 | 0.0215 | |
| 21~42 d | BWG (g) | 808 b | 856 a | 884 a | 889 a | 31 | 0.0009 |
| FI (g) | 1700 | 1758 | 1781 | 1725 | 63 | 0.1616 | |
| F/G (g/g) | 2.11 a | 2.05 b | 2.02 b | 1.94 c | 0.03 | 0.0001 | |
| FPW (g/g) | 0.34 d | 0.35 c | 0.36 b | 0.37 a | 0.01 | 0.0001 | |
| 1~42 d | BWG (g) | 1203.42 c | 1251.02 bc | 1307.18 a | 1297.23 ab | 44 | 0.0021 |
| FI (g) | 2388 | 2420 | 2485 | 2377 | 103 | 0.2981 | |
| F/G (g/g) | 1.99 a | 1.93 b | 1.90 b | 1.83 c | 0.04 | 0.0001 | |
| FPW (g/g) | 0.33 c | 0.34 b | 0.35 a | 0.36 a | 0.01 | 0.0001 | |
| Item | Group 1 | Group 2 | Group 3 | Group 4 | SEM | p-Value |
|---|---|---|---|---|---|---|
| Slaughter rate (%) | 89.84 | 89.77 | 86.74 | 90.55 | 3.04 | 0.1672 |
| Semi-evisceration rate (%) | 81.77 | 82.14 | 82.03 | 82.67 | 1.60 | 0.7980 |
| Full-bore rate (%) | 66.35 | 67.14 | 67.35 | 68.54 | 1.69 | 0.1971 |
| Abdominal fat rate (%) | 2.53 | 3.38 | 3.21 | 2.09 | 1.13 | 0.2029 |
| Liver index (%) | 2.04 a | 1.89 ab | 1.70 bc | 1.61 c | 0.16 | 0.0009 |
| Spleen index (%) | 0.16 | 0.14 | 0.14 | 0.18 | 0.04 | 0.1124 |
| Bursal index (%) | 0.19 | 0.26 | 0.22 | 0.24 | 0.08 | 0.5238 |
| Item | Group 1 | Group 2 | Group 3 | Group 4 | SEM | p-Value |
|---|---|---|---|---|---|---|
| TP (g/L) | 71.23 ab | 66.97 b | 77.05 a | 76.58 a | 5.84 | 0.0214 |
| ALB (g/L) | 43.18 | 44.95 | 43.90 | 44.70 | 0.40 | 0.9622 |
| GLU (mmol/L) | 8.24 | 8.91 | 8.01 | 8.71 | 1.89 | 0.8300 |
| BUN (mmol/L) | 5.07 | 5.81 | 5.11 | 6.12 | 1.26 | 0.4047 |
| TC (mmol/L) | 4.47 | 5.14 | 4.79 | 4.54 | 0.71 | 0.3805 |
| TG (mmol/L) | 2.00 | 2.46 | 2.24 | 2.17 | 0.54 | 0.5467 |
| GSH-Px (ng/mL) | 12.80 | 11.18 | 14.42 | 13.84 | 3.29 | 0.3628 |
| SOD (pg/mL) | 1641 | 1722 | 1923 | 1601 | 450 | 0.6199 |
| TAC (U/mL) | 6.94 | 7.26 | 5.79 | 6.19 | 1.75 | 0.4672 |
| MDA (mmol/L) | 7.79 | 7.16 | 7.15 | 6.48 | 1.42 | 0.4799 |
| IgM (ng/mL) | 355 | 380 | 333 | 338 | 102 | 0.8546 |
| IgA (µg/mL) | 48.87 | 62.90 | 56.43 | 59.75 | 15.76 | 0.4697 |
| IgG (µg/mL) | 19.02 | 19.00 | 18.88 | 18.91 | 0.03 | 0.9999 |
| Listing Time | Item | Group 1 | Group 2 | Group 3 | Group 4 | SEM | p-Value |
|---|---|---|---|---|---|---|---|
| 35 d | Body weight/g | 980 c | 1016 bc | 1065 a | 1051 ab | 34 | 0.0016 |
| Profit of all chickens/(CNY) | 1.11 c | 1.26 bc | 1.40 ab | 1.48 a | 0.12 | 0.0002 | |
| 42 d | Body weight/g | 1245 b | 1293 ab | 1349 a | 1339 a | 44 | 0.0022 |
| Profits of all chickens/(CNY) | 1.41 c | 1.60 b | 1.74 ab | 1.87 a | 0.16 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Yan, P.; Liu, X.; Fu, C.; Shang, Y.; Gao, Q.; Dong, Y.; Li, X.; Zhang, K.; Shi, T. Effects of Graded Crude Protein Levels Under Fixed Amino Acid Supplementation on Growth Metabolism, Slaughter Quality, Nitrogen Emission, and Breeding Efficiency of Small White-Feather Broilers. Appl. Sci. 2026, 16, 1282. https://doi.org/10.3390/app16031282
Zhang H, Yan P, Liu X, Fu C, Shang Y, Gao Q, Dong Y, Li X, Zhang K, Shi T. Effects of Graded Crude Protein Levels Under Fixed Amino Acid Supplementation on Growth Metabolism, Slaughter Quality, Nitrogen Emission, and Breeding Efficiency of Small White-Feather Broilers. Applied Sciences. 2026; 16(3):1282. https://doi.org/10.3390/app16031282
Chicago/Turabian StyleZhang, Heng, Peipei Yan, Xuelan Liu, Chunyan Fu, Yan Shang, Qingtao Gao, Yilei Dong, Xia Li, Kun Zhang, and Tianhong Shi. 2026. "Effects of Graded Crude Protein Levels Under Fixed Amino Acid Supplementation on Growth Metabolism, Slaughter Quality, Nitrogen Emission, and Breeding Efficiency of Small White-Feather Broilers" Applied Sciences 16, no. 3: 1282. https://doi.org/10.3390/app16031282
APA StyleZhang, H., Yan, P., Liu, X., Fu, C., Shang, Y., Gao, Q., Dong, Y., Li, X., Zhang, K., & Shi, T. (2026). Effects of Graded Crude Protein Levels Under Fixed Amino Acid Supplementation on Growth Metabolism, Slaughter Quality, Nitrogen Emission, and Breeding Efficiency of Small White-Feather Broilers. Applied Sciences, 16(3), 1282. https://doi.org/10.3390/app16031282

