Machine Learning Methods for Predicting Cancer Complications Using Smartphone Sensor Data: A Prospective Study
Abstract
Share and Cite
Dargė, G.; Kasputytė, G.; Savickas, P.; Bunevičius, A.; Bunevičienė, I.; Korobeinikova, E.; Vaitiekus, D.; Inčiūra, A.; Jaruševičius, L.; Bunevičius, R.; et al. Machine Learning Methods for Predicting Cancer Complications Using Smartphone Sensor Data: A Prospective Study. Appl. Sci. 2026, 16, 249. https://doi.org/10.3390/app16010249
Dargė G, Kasputytė G, Savickas P, Bunevičius A, Bunevičienė I, Korobeinikova E, Vaitiekus D, Inčiūra A, Jaruševičius L, Bunevičius R, et al. Machine Learning Methods for Predicting Cancer Complications Using Smartphone Sensor Data: A Prospective Study. Applied Sciences. 2026; 16(1):249. https://doi.org/10.3390/app16010249
Chicago/Turabian StyleDargė, Gabrielė, Gabrielė Kasputytė, Paulius Savickas, Adomas Bunevičius, Inesa Bunevičienė, Erika Korobeinikova, Domas Vaitiekus, Arturas Inčiūra, Laimonas Jaruševičius, Romas Bunevičius, and et al. 2026. "Machine Learning Methods for Predicting Cancer Complications Using Smartphone Sensor Data: A Prospective Study" Applied Sciences 16, no. 1: 249. https://doi.org/10.3390/app16010249
APA StyleDargė, G., Kasputytė, G., Savickas, P., Bunevičius, A., Bunevičienė, I., Korobeinikova, E., Vaitiekus, D., Inčiūra, A., Jaruševičius, L., Bunevičius, R., Krikštolaitis, R., Krilavičius, T., & Juozaitytė, E. (2026). Machine Learning Methods for Predicting Cancer Complications Using Smartphone Sensor Data: A Prospective Study. Applied Sciences, 16(1), 249. https://doi.org/10.3390/app16010249

