Applied Artificial Intelligence for Industrial Nondestructive Evaluation NDE4.0
1. Introduction
2. An Overview of the Published Articles
3. Conclusions
Author Contributions
Conflicts of Interest
List of Contributions
- Lang, V.; Herrmann, C.; Fuchs, M.; Ihlenfeldt, S. Deep Learning Utilization for In-Line Monitoring of an Additive Co-Extrusion Process Based on Evaluation of Laser Profiler Data. Appl. Sci. 2025, 15, 1727. https://doi.org/10.3390/app15041727.
- Bai, J.; Zhu, W.; Liu, S.; Ye, C.; Zheng, P.; Wang, X. A Temporal Convolutional Network–Bidirectional Long Short-Term Memory (TCN-BiLSTM) Prediction Model for Temporal Faults in Industrial Equipment. Appl. Sci. 2025, 15, 1702. https://doi.org/10.3390/app15041702.
- Wang, H.; Xie, J. Fault Diagnosis of Rolling Bearings Based on Acoustic Signals in Strong Noise Environments. Appl. Sci. 2025, 15, 1389. https://doi.org/10.3390/app15031389.
- Ko, S.; Lee, S. Multi-Patch Time Series Transformer for Robust Bearing Fault Detection with Varying Noise. Appl. Sci. 2025, 15, 1257. https://doi.org/10.3390/app15031257.
- Jin, Q.; Han, Q.; Qian, J.; Sun, L.; Ge, K.; Xia, J. Drainage Pipeline Multi-Defect Segmentation Assisted by Multiple Attention for Sonar Images. Appl. Sci. 2025, 15, 597. https://doi.org/10.3390/app15020597.
- Li, K.; Chen, X. Machine Learning-Based Lithium Battery State of Health Prediction Research. Appl. Sci. 2025, 15, 516. https://doi.org/10.3390/app15020516.
- Wang, J.; Chen, T.; Xu, X.; Zhao, L.; Yuan, D.; Du, Y.; Guo, X.; Chen, N. An Improved YOLOv8 Model for Strip Steel Surface Defect Detection. Appl. Sci. 2025, 15, 52. https://doi.org/10.3390/app15010052.
- Val, S.; Lambán, M.; Lucia, J.; Royo, J. Analysis and Prediction of Wear in Interchangeable Milling Insert Tools Using Artificial Intelligence Techniques. Appl. Sci. 2024, 14, 11840. https://doi.org/10.3390/app142411840.
- Baumeyer, J.; Chatoux, H.; Pelletier, A.; Marquié, P. Industrial Application of AI-Based Assistive Magnetic Particle Inspection. Appl. Sci. 2024, 14, 1499. https://doi.org/10.3390/app14041499.
- Wei, Z.; Osman, A.; Valeske, B.; Maldague, X. A Dataset of Pulsed Thermography for Automated Defect Depth Estimation. Appl. Sci. 2023, 13, 13093. https://doi.org/10.3390/app132413093.
- Wei, Z.; Osman, A.; Valeske, B.; Maldague, X. Pulsed Thermography Dataset for Training Deep Learning Models. Appl. Sci. 2023, 13, 2901. https://doi.org/10.3390/app13052901.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, A.; Kaftandjian, V. Applied Artificial Intelligence for Industrial Nondestructive Evaluation NDE4.0. Appl. Sci. 2025, 15, 4968. https://doi.org/10.3390/app15094968
Osman A, Kaftandjian V. Applied Artificial Intelligence for Industrial Nondestructive Evaluation NDE4.0. Applied Sciences. 2025; 15(9):4968. https://doi.org/10.3390/app15094968
Chicago/Turabian StyleOsman, Ahmad, and Valerie Kaftandjian. 2025. "Applied Artificial Intelligence for Industrial Nondestructive Evaluation NDE4.0" Applied Sciences 15, no. 9: 4968. https://doi.org/10.3390/app15094968
APA StyleOsman, A., & Kaftandjian, V. (2025). Applied Artificial Intelligence for Industrial Nondestructive Evaluation NDE4.0. Applied Sciences, 15(9), 4968. https://doi.org/10.3390/app15094968