Novel Fiber Bragg Grating Sensing Structure for Simultaneous Measurement of Inclination and Water Level
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.; Leng, J.; Li, J.; Wei, H.; Li, S.; Wang, F. Application of Acoustic Emission Technique in Landslide Monitoring and Early Warning: A Review. Appl. Sci. 2025, 15, 1663. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Silva, J.; Macedo, L.; Marchesi, A.; Morau, S.; Valentino, J.; Valentim, F.; Costa, M. The Role of Optical Fiber Sensors in the New Generation of Healthcare Devices: A Review. Sens. Diagn. 2024, 3, 1135–1158. [Google Scholar] [CrossRef]
- Cięszczyk, S.; Panas, P.; Skorupski, K.; Kida, M. Fibre Bragg Grating Wavelength Shift Demodulation with Filtering and Enhancement of Spectra by Simple Nonlinear Signal Processing. Appl. Sci. 2025, 15, 3384. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Silveira, M.; Macedo, L.; Frizera, A.; Marques, C. Polarization-Assisted Multiparameter Sensing Using a Single Fiber Bragg Grating. Opt. Fiber Technol. 2024, 84, 103775. [Google Scholar] [CrossRef]
- Mandal, H.N.; Sidhishwari, S. Apodized Chirped Fiber Bragg Grating for Measuring the Uniform and Non-Uniform CharacTeristics of Physical Parameters. Measurement 2025, 240, 115606. [Google Scholar] [CrossRef]
- Ramos, C.C.; Preizal, J.; Hu, X.; Caucheteur, C.; Woyessa, G.; Bang, O.; Rocha, A.M.; Oliveira, R. High Resolution Liquid Level Sensor Based on Archimedes’ Law of Buoyancy Using Polymer Optical Fiber Bragg Gratings. Measurement 2025, 252, 117368. [Google Scholar] [CrossRef]
- de Almeida, G.G.; Barreto, R.C.; Seidel, K.F.; Kamikawachi, R.C. A Fiber Bragg Grating Water Level Sensor Based on the Force of Buoyancy. IEEE Sens. J. 2019, 20, 3608–3613. [Google Scholar] [CrossRef]
- Rosolem, J.B.; Dini, D.C.; Penze, R.S.; Floridia, C.; Leonardi, A.A.; Loichate, M.D.; Durelli, A.S. Fiber Optic Bending Sensor for Water Level Monitoring: Development and Field Test: A Review. IEEE Sens. J. 2013, 13, 4113–4120. [Google Scholar] [CrossRef]
- He, R.; Teng, C.; Kumar, S.; Marques, C.; Min, R. Polymer Optical Fiber Liquid Level Sensor: A Review. IEEE Sens. J. 2021, 22, 1081–1091. [Google Scholar] [CrossRef]
- Lee, H.K.; Choo, J.; Kim, J. Multiplexed Passive Optical Fiber Sensor Networks for Water Level Monitoring: A Review. Sensors 2020, 20, 6813. [Google Scholar] [CrossRef]
- Lee, H.K.; Kim, Y.; Park, S.; Kim, J. Passive IoT Optical Fiber Sensor Network for Water Level Monitoring with Signal Processing of Feature Extraction. Electronics 2023, 12, 1823. [Google Scholar] [CrossRef]
- Dejband, E.; Tan, T.H.; Yao, C.K.; Chang, E.M.; Peng, P.C. Enhancing Multichannel Fiber Optic Sensing Systems with IFFT-DNN for Remote Water Level Monitoring. Sensors 2024, 24, 4903. [Google Scholar] [CrossRef]
- Lee, H.K.; Choo, J.; Shin, G.; Kim, J. Long-Reach DWDM-Passive Optical Fiber Sensor Network for Water Level Monitoring of Spent Fuel Pool in Nuclear Power Plant. Sensors 2020, 20, 4218. [Google Scholar] [CrossRef]
- Pereira, K.; Coimbra, W.; Lazaro, R.; Frizera-Neto, A.; Marques, C.; Leal-Junior, A.G. FBG-Based Temperature Sensors for Liquid Identification and Liquid Level Estimation Via Random Forest. Sensors 2021, 21, 4568. [Google Scholar] [CrossRef] [PubMed]
- Schenato, L. A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications. Appl. Sci. 2017, 7, 896. [Google Scholar] [CrossRef]
- Shangguan, M.; Yang, Z.; Shangguan, M.; Lin, Z.; Liao, Z.; Guo, Y.; Liu, C. Remote Sensing Oil in Water with an All-Fiber Underwater Single-Photon Raman Lidar. Appl. Opt. 2023, 62, 5301–5305. [Google Scholar] [CrossRef]
- Li, P.; Yan, H.; Zhang, H. Highly Sensitive Liquid Level Sensor Based on an Optical Fiber Michelson Interferometer with Core-Offset Structure. Optik 2018, 171, 781–785. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Zhang, L.; Mohanty, L.; Jin, R.B.; Wu, S.; Lu, P. High-Precision Fiber Optic Liquid Level Sensor Based on Fast Fourier Amplitude Demodulation in a Specific Range of Spectrum. Measurement 2022, 187, 110326. [Google Scholar] [CrossRef]
- Martins, J.; Diaz, C.A.; Domingues, M.F.; Ferreira, R.A.; Antunes, P.; Andre, P.S. Low-Cost and High-Performance Optical Fiber-Based Sensor for Liquid Level Monitoring. IEEE Sens. J. 2019, 19, 4882–4888. [Google Scholar] [CrossRef]
- Diaz, C.A.; Leal-Junior, A.; Marques, C.; Frizera, A.; Pontes, M.J.; Antunes, P.F.; Andre, P.S.; Ribeiro, M.R. Optical Fiber Sensing for Sub-Millimeter Liquid-Level Monitoring: A Review. IEEE Sens. J. 2019, 19, 7179–7191. [Google Scholar] [CrossRef]
- Lee, C.L.; Yeh, C.Y.; Jiang, Y.X. Effective Liquid-filled Leaky-Guided Fiber Mach-Zehnder Interferometer with a Side-Polished Fiber. IEEE Sens. J. 2025, 25, 9681–9688. [Google Scholar] [CrossRef]
- Zhu, K.; Ren, S.; Li, X.; Liu, Y.; Li, J.; Zhang, L.; Wang, M. Sub-Micron Two-Dimensional Displacement Sensor Based on a Multi-Core Fiber. Photonics 2024, 11, 1073. [Google Scholar] [CrossRef]
- Noori, N.F.; Mansour, T.S. A Review of Recently Optical Hybrid Optical Fiber Interferometers. J. Opt 2025, 1–14. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, M.; Shao, Y.; Liu, C.; Ren, P.; Zhang, Z.; Liu, Z. Asymmetric Coated Direction Recognition Fiber Optic Interferometric Curvature Sensor. J. Light. Technol. 2025, 1–6. [Google Scholar] [CrossRef]
- Lu, C.; Su, J.; Dong, X.; Sun, T.; Grattan, K.T. Simultaneous Measurement of Strain and Temperature with a Few-Mode Fiber-Based Sensor. J. Light. Technol. 2018, 36, 2796–2802. [Google Scholar] [CrossRef]
- Lei, X.; Dong, X.; Lu, C.; Sun, T.; Grattan, K.T. Underwater Pressure and Temperature Sensor Based on a Special Dual-Mode Optical Fiber. IEEE Access 2020, 8, 146463–146471. [Google Scholar] [CrossRef]
- Duan, S.; Wang, W.; Xiong, L.; Wang, B.; Liu, B.; Lin, W.; Zhang, H.; Liu, H.; Zhang, X. All In-Fiber Fabry–Pérot Interferometer Sensor Towards Refractive Index and Temperature Simultaneous Sensing. Opt. Laser Technol. 2025, 180, 111551. [Google Scholar] [CrossRef]
- Dang, Y.; Zhao, Z.; Wang, X.; Liao, R.; Lu, C. Simultaneous Distributed Vibration and Temperature Sensing Using Multicore Fiber. IEEE access 2019, 7, 151818–151826. [Google Scholar] [CrossRef]
- Lu, L.; Yong, M.; Wang, Q.; Bu, X.; Gao, Q. A Hybrid Distributed Optical Fiber Vibration and Temperature Sensor Based on Optical Rayleigh and Raman Scattering. Opt. Commun. 2023, 529, 129096. [Google Scholar] [CrossRef]
- Zhou, Z.; Tian, L.; Han, Y.; Yang, X.; Liao, F.; Zhang, D.; Sha, Y.; Feng, X.; Zhu, J.; Zheng, X.; et al. Distributed Vibration and Temperature Simultaneous Sensing Using One Optical Fiber. Opt. Commun. 2021, 487, 126801. [Google Scholar] [CrossRef]
- Yao, C.K.; Lin, T.C.; Chen, H.M.; Hsu, W.Y.; Manie, Y.C.; Peng, P.C. Inclination Measurement Adopting Raman Distributed Temperature Sensor. IEEE Sens. J. 2023, 23, 22543–22555. [Google Scholar] [CrossRef]
- Kanwal, F.; Atieh, A.; Ghafoor, S.; Haq, A.U.; Qureshi, K.K.; Aziz, I.; Mirza, J. Remote Monitoring of Sleep Disorder Using FBG Sensors and FSO Transmission System Enabled Smart Vest. Eng. Res. Express 2024, 6, 025337. [Google Scholar] [CrossRef]
- Sadik, S.A. Leveraging Fiber Bragg Grating Sensors for Enhanced Security in Smart Grids. In 5G and Fiber Optics Security Technologies for Smart Grid Cyber Defense; IGI Global: Hershey, PA, USA, 2024; pp. 259–288. [Google Scholar]
- Zhang, Q.; Yu, J.; Long, J.; Wang, C.; Chen, J.; Lu, X. A Hybrid RF/FSO Transmission System Based on a Shared Transmitter. Sensors 2025, 25, 2021. [Google Scholar] [CrossRef]
- Syriopoulos, G.; Kyriazi, E.; Prousalidi, T.; Ntanos, A.; Stathis, A.; Kourelias, P.; Toumasis, P.; Zervos, H.; Giannoulis, G.; Poulopoulos, G.; et al. Co-Existence of SiPh Sensing Link and Real World Traffic over 100 m FSO link for 6G Deployments. IEEE Photonics Technol. Lett. 2025, 37, 9. [Google Scholar] [CrossRef]
- Yao, C.K.; Lin, H.P.; Cheng, C.L.; Chung, M.A.; Lin, Y.S.; Wu, W.B.; Chiang, C.W.; Peng, P.C. Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication. Fibers 2025, 13, 39. [Google Scholar] [CrossRef]
- Yao, C.K.; Kumar, P.; Liu, B.X.; Dehnaw, A.M.; Peng, P.C. Simultaneous Vibration and Temperature Real-Time Monitoring Using Single Fiber Bragg Grating and Free Space Optics. Appl. Sci. 2024, 14, 11099. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, J.S.; Ahn, S.; Cho, S.Y.; Kim, M.S.; Yoo, J.H.; Jeon, M.Y. Simultaneous Temperature and Strain Measurement in Fiber Bragg Grating Via Wavelength-Swept Laser and Machine Learning. IEEE Sens. J. 2024, 24, 27516–27524. [Google Scholar] [CrossRef]
- Chao, C.R.; Liang, W.L.; Liang, T.C. Design and Testing of a 2D Optical Fiber Sensor for Building Tilt Monitoring Based on Fiber Bragg Gratings. Appl. Syst. Innov. 2017, 1, 2. [Google Scholar] [CrossRef]
- Bogale, S.D.; Yao, C.K.; Manie, Y.C.; Zhong, Z.G.; Peng, P.C. Wavelength-Dependent Bragg Grating Sensors Cascade an Interferometer Sensor to Enhance Sensing Capacity and Diversification through the Deep Belief Network. Appl. Sci. 2024, 14, 7333. [Google Scholar] [CrossRef]
- Dejband, E.; Manie, Y.C.; Deng, Y.J.; Bitew, M.A.; Tan, T.H.; Peng, P.C. High Accuracy and Cost-Effective Fiber Optic Liquid Level Sensing System Based on Deep Neural Network. Sensors 2023, 23, 2360. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.-K.; Chung, Y.-J.; Xu, Y.-C.; Kumar, P.; Peng, P.-C. Novel Fiber Bragg Grating Sensing Structure for Simultaneous Measurement of Inclination and Water Level. Appl. Sci. 2025, 15, 4819. https://doi.org/10.3390/app15094819
Yao C-K, Chung Y-J, Xu Y-C, Kumar P, Peng P-C. Novel Fiber Bragg Grating Sensing Structure for Simultaneous Measurement of Inclination and Water Level. Applied Sciences. 2025; 15(9):4819. https://doi.org/10.3390/app15094819
Chicago/Turabian StyleYao, Cheng-Kai, Yao-Jen Chung, Yong-Chang Xu, Pradeep Kumar, and Peng-Chun Peng. 2025. "Novel Fiber Bragg Grating Sensing Structure for Simultaneous Measurement of Inclination and Water Level" Applied Sciences 15, no. 9: 4819. https://doi.org/10.3390/app15094819
APA StyleYao, C.-K., Chung, Y.-J., Xu, Y.-C., Kumar, P., & Peng, P.-C. (2025). Novel Fiber Bragg Grating Sensing Structure for Simultaneous Measurement of Inclination and Water Level. Applied Sciences, 15(9), 4819. https://doi.org/10.3390/app15094819