Fatigue Strength of Machines and Systems
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pantazopoulos, G.; Vazdirvanidis, A.; Toulfatzis, A.; Papadopoulou, S.; Rikos, A. Failure Analysis of Industrial Products and Components: From Identification to Process Based Approach. Mater. Sci. Technol. 2019, 2019, 904–911. [Google Scholar] [CrossRef]
- Strzelecki, P.; Sempruch, J. Verification of Analytical Models of the S-N Curve within Limited Fatigue Life. J. Theor. Appl. Mech. 2016, 54, 63. [Google Scholar] [CrossRef]
- Kocak, M.; Webster, S.; Janosch, J.J.; Ainsworth, R.A.; Koers, R. FITNET Fitness-for-Service PROCEDURE—FINAL DRAFT MK7; GKSS Research Centre: Geesthacht, Germany, 2006. [Google Scholar]
- Lee, Y.L.; Paw, J.; Hathaway, R.B.; Barkey, M.E. Fatigue Testing and Analysis—Theory and Practice; Elsevier Butterworth–Heinemann: Amsterdam, The Netherlands, 2005; ISBN 978-0-7506-7719-6. [Google Scholar]
- Tomaszewski, T. Fatigue Life Analysis of Steel Bicycle Frame According to ISO 4210. Eng. Fail. Anal. 2020, 122, 105195. [Google Scholar] [CrossRef]
- Zerbst, U.; Beretta, S.; Köhler, G.; Lawton, A.; Vormwald, M.; Beier, H.T.; Klinger, C.; Černý, I.; Rudlin, J.; Heckel, T.; et al. Safe Life and Damage Tolerance Aspects of Railway Axles—A Review. Eng. Fract. Mech. 2013, 98, 214–271. [Google Scholar] [CrossRef]
- Zambrano, O.A.; Coronado, J.J.; Rodríguez, S.A. Failure Analysis of a Bridge Crane Shaft. Case Stud. Eng. Fail. Anal. 2014, 2, 25–32. [Google Scholar] [CrossRef]
- Gagg, C.R.; Lewis, P.R. In-Service Fatigue Failure of Engineered Products and Structures—Case Study Review. Eng. Fail. Anal. 2009, 16, 1775–1793. [Google Scholar] [CrossRef]
- Sachs, N.W. Understanding the Surface Features of Fatigue Fractures: How They Describe the Failure Cause and the Failure History. J. Fail. Anal. Prev. 2005, 5, 11–15. [Google Scholar] [CrossRef]
- Maisuradze, M.V.; Antakov, E.V. Analysis of Fatigue Failure Causes of Machine Components. Steel Transl. 2021, 51, 745–751. [Google Scholar] [CrossRef]
- Lintner, A.; Pippan, R.; Schloffer, M.; Hohenwarter, A. Effect of a Single Overload on the Cyclic R-Curve Behaviour of a γ-TiAl TNM Alloy. Int. J. Fatigue 2022, 163, 107083. [Google Scholar] [CrossRef]
- Citarella, R.; Giannella, V.; Lepore, M. DBEM Crack Propagation for Nonlinear Fracture Problems. Frattura ed Integrita Strutturale 2015, 9, 514–523. [Google Scholar] [CrossRef]
- Das, S.; Mukhopadhyay, G.; Bhattacharyya, S. Failure Analysis of a 40 Ton Crane Hook at a Hot Strip Mill. MATEC Web Conf. 2018, 165, 1–10. [Google Scholar] [CrossRef]
- Nourian-Avval, A.; Fatemi, A. Fatigue Design with High Pressure Die Cast Aluminum Including the Effects of Defects, Section Size, Stress Gradient, and Mean Stress. Mater. Today Commun. 2020, 25, 101567. [Google Scholar] [CrossRef]
- Monclova-Quintana, O.; Piña-Monarrez, M.R.; Hernández-Ramos, M.M.; Ortiz-Yáñez, J.F. Methodology to Determine the Stress Distribution Based on Fatigue Data with Bilinear Behavior and Its P–S–N Field and Testing Plan. Appl. Sci. 2025, 15, 2295. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzelecki, P.; Stopel, M.; Kotyk, M. Fatigue Strength of Machines and Systems. Appl. Sci. 2025, 15, 4510. https://doi.org/10.3390/app15084510
Strzelecki P, Stopel M, Kotyk M. Fatigue Strength of Machines and Systems. Applied Sciences. 2025; 15(8):4510. https://doi.org/10.3390/app15084510
Chicago/Turabian StyleStrzelecki, Przemysław, Michał Stopel, and Maciej Kotyk. 2025. "Fatigue Strength of Machines and Systems" Applied Sciences 15, no. 8: 4510. https://doi.org/10.3390/app15084510
APA StyleStrzelecki, P., Stopel, M., & Kotyk, M. (2025). Fatigue Strength of Machines and Systems. Applied Sciences, 15(8), 4510. https://doi.org/10.3390/app15084510