Modification of Mineral Content in Bread with the Addition of Buckwheat Husk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bread Preparation
2.2. Chemicals and Reagents
2.3. Mineral Determination
2.4. Statistical Analysis
3. Results and Discussion
3.1. Mineral Contents in the Tested Bread Samples
3.2. Evaluation of the Coverage of Daily Demand for Selected Minerals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for Bread Fortification: A Necessity or a Choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Wiemer, K.L.; Dary, O.; Keen, C.L.; King, J.C.; Miller, K.B.; Philbert, M.A.; Tarasuk, V.; Taylor, C.L.; Gaine, P.C.; et al. Fortification and Health: Challenges and Opportunities. Adv. Nutr. 2015, 6, 124–131. [Google Scholar] [CrossRef]
- De Boni, A.; Pasqualone, A.; Roma, R.; Acciani, C. Traditions, Health and Environment as Bread Purchase Drivers: A Choice Experiment on High-Quality Artisanal Italian Bread. J. Clean. Prod. 2019, 221, 249–260. [Google Scholar] [CrossRef]
- Edwards, W.P. The Science of Bakery Products; The Royal Society of Chemistry: Cambridge, UK, 2007; Volume 382. [Google Scholar] [CrossRef]
- Ibrahim, U.K.; Salleh, R.M.; Maqsood-ul-Haque, S.N.S. Bread towards Functional Food: An Overview. ETP Int. J. Food Eng. 2015, 1, 39–43. [Google Scholar] [CrossRef]
- Ranawana, V.; Raikos, V.; Campbell, F.; Bestwick, C.; Nicol, P.; Milne, L.; Duthie, G. Breads Fortified with Freeze-Dried Vegetables: Quality and Nutritional Attributes. Part 1: Breads Containing Oil as an Ingredient. Foods 2016, 5, 19. [Google Scholar] [CrossRef]
- Zlateva, D.; Stefanova, D.; Chochkov, R.; Ivanova, P. Study on the Impact of Pumpkin Seed Flour on Mineral Content of Wheat Bread. Food Sci. Appl. Biotechnol. 2022, 5, 131–139. [Google Scholar] [CrossRef]
- Czarnowska, M.; Starowicz, M.; Barišić, V.; Kujawski, W. Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods 2022, 11, 3414. [Google Scholar] [CrossRef] [PubMed]
- Purkiewicz, A.; Gul, F.H.; Pietrzak-Fiećko, R. The Utilization of Vegetable Powders for Bread Enrichment—The Effect on the Content of Selected Minerals, Total Phenolic and Flavonoid Content, and the Coverage of Daily Requirements in the Human Diet. Appl. Sci. 2024, 14, 10022. [Google Scholar] [CrossRef]
- Guo, X.-D.; Wu, C.-S.; Ma, Y.-J.; Parry, J.; Xu, Y.-Y.; Liu, H.; Wang, M.J. Comparison of Milling Fractions of Tartary Buckwheat for Their Phenolics and Antioxidant Properties. Food Res. Int. 2012, 49, 53–59. [Google Scholar] [CrossRef]
- Gutiérrez, Á.L.; Villanueva, M.; Rico, D.; Harasym, J.; Ronda, F.; Martín-Diana, A.B.; Caballero, P.A. Valorisation of Buckwheat By-Product as a Health-Promoting Ingredient Rich in Fibre for the Formulation of Gluten-Free Bread. Foods 2023, 12, 2781. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Guo, Z.; Wang, H.; Wang, A.; Li, Z.; Chen, Y.; Qiu, J. Effect of Buckwheat Hull Particle-Size on Bread Staling Quality. Food Chem. 2022, 405, 134851. [Google Scholar] [CrossRef] [PubMed]
- Wronkowska, M.; Zieliński, H.; Szmatowicz, B.; Ostaszyk, A.; Lamparski, G.; Majkowska, A. Effect of Roasted Buckwheat Flour and Hull Enrichment on the Sensory Qualities, Acceptance and Safety of Innovative Mixed Rye/Wheat and Wheat Bakery Products. J. Food Process. Preserv. 2019, 43, e14025. [Google Scholar] [CrossRef]
- Klepacka, J. Determining the Possibility of Using Buckwheat Hulls in the Food Industry. Food Ind. 2023, 12, 36–38. [Google Scholar] [CrossRef]
- Klepacka, J.; Czarnowska-Kujawska, M. An Evaluation of the Possibility of Using Buckwheat Hulls as an Addition to Bread. Proceedings 2023, 91, 347. [Google Scholar] [CrossRef]
- Whiteside, P.; Miner, B. Pye Unicam Atomic Absorption Data Book; Pye Unicam Ltd.: Cambridge, UK, 1984. [Google Scholar]
- Jarosz, M. Nutrition Standards for the Polish Population; Food and Nutrition Institute: Warsaw, Poland, 2017; Available online: http://zywnosc.com.pl/wp-content/uploads/2017/12/normy-zywienia-dla-populacji-polski-2017-1.pdf (accessed on 30 August 2022).
- Torrinha, Á.; Oliveira, M.; Marinho, S.; Paíga, P.; Delerue-Matos, C.; Morais, S. Mineral Content of Various Portuguese Breads: Characterization, Dietary Intake, and Discriminant Analysis. Molecules 2019, 24, 2787. [Google Scholar] [CrossRef]
- Ertl, K.; Goessler, W. Grains, Whole Flour, White Flour, and Some Final Goods: An Elemental Comparison. Eur. Food Res. Technol. 2018, 244, 2065–2075. [Google Scholar] [CrossRef]
- Milićević, N.; Sakač, M.; Mandić, A.; Psodorov, D.; Jambrec, D.; Pestorić, M.; Sedej, I.; Tamara; Hadnadev, D. Rheological Properties and Mineral Content of Buckwheat Enriched Wholegrain Wheat Pasta. Chem. Ind. Chem. Eng. Q. 2014, 20, 135–142. [Google Scholar] [CrossRef]
- Jachimowicz, K.; Winiarska-Mieczan, A.; Baranowska-Wójcik, E.; Bąkowski, M. Pasta as a Source of Minerals in the Diets of Poles: Effect of Culinary Processing of Pasta on the Content of Minerals. Foods 2021, 10, 2131. [Google Scholar] [CrossRef] [PubMed]
- Salejda, A.M.; Olender, K.; Zielińska-Dawidziak, M.; Mazur, M.; Szperlik, J.; Miedzianka, J.; Zawiślak, I.; Kolniak-Ostek, J.; Szmaja, A. Frankfurter-Type Sausage Enriched with Buckwheat By-Product as a Source of Bioactive Compounds. Foods 2022, 11, 674. [Google Scholar] [CrossRef]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Minerals, Phytic Acid, Tannin and Rutin in Buckwheat Seed Milling Fractions. J. Sci. Food Agric. 2001, 81, 1094–1100. [Google Scholar] [CrossRef]
- Klepacka, J.; Najda, A. Effect of Commercial Processing on Polyphenols and Antioxidant Activity of Buckwheat Seeds. Int. J. Food Sci. Technol. 2021, 56, 661–670. [Google Scholar] [CrossRef]
- Amini, K.A.; Kebede, B.; Birch, J.; Bekhit, A.E.-D.A. The Effect of Bread Fortification with Whole Green Banana Flour on Its Physicochemical, Nutritional and In Vitro Digestibility. Foods 2020, 9, 152. [Google Scholar] [CrossRef]
- Johnson, P.E. Effect of Food Processing and Preparation on Mineral Utilization. Adv. Exp. Med. Biol. 1991, 289, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Klepacka, J.; Tońska, E.; Rafałowski, R.; Czarnowska, M.; Opara, B. Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules 2021, 26, 1487. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.A.; Reichert, R.D. Comparison of the Effect of Cell Wall and Hull Fiber from Canola and Soybean on the Bioavailability for Rats of Minerals, Protein and Lipid. J. Nutr. 1986, 116, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.D.; Kokko, C.; Ballard, C.S.; Dann, H.M.; Fustini, M.; Palmonari, A.; Formigoni, A.; Cotanch, K.W.; Grant, R.J. Influence of Fiber Degradability of Corn Silage in Diets with Lower and Higher Fiber Content on Lactational Performance, Nutrient Digestibility, and Ruminal Characteristics in Lactating Holstein Cows. J. Dairy Sci. 2020, 104, 1728–1743. [Google Scholar] [CrossRef]
- Baye, K.; Guyot, J.-P.; Mouquet-Rivier, C. The Unresolved Role of Dietary Fibers on Mineral Absorption. Crit. Rev. Food Sci. Nutr. 2015, 57, 949–957. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Triki, T.; Tlahig, S.; Benabderrahim, M.A.; Elfalleh, W.; Mabrouk, M.; Bagues, M.; Yahia, H.; Belhouchette, K.; Guasmi, F.; Loumerem, M. Variation in Phenolic, Mineral, Dietary Fiber, and Antioxidant Activity across Southern Tunisian Pearl Millet Germplasm. J. Food Qual. 2022, 2022, 1437306. [Google Scholar] [CrossRef]
- Juśkiewicz, J.; Fotschki, B.; Stępniowska, A.; Cholewińska, E.; Napiórkowska, D.; Marzec, A.; Ognik, K. Dietary Fiber with Functional Properties Counteracts the Thwarting Effects of Copper Nanoparticles on the Microbial Enzymatic Activity and Short-Chain Fatty Acid Production in the Feces of Rats. Pol. J. Food Nutr. Sci. 2024, 74, 363–375. [Google Scholar] [CrossRef]
- Gębski, J.; Jeżewska-Zychowicz, M.; Szlachciuk, J.; Kosicka-Gębska, M. Impact of Nutritional Claims on Consumer Preferences for Bread with Varied Fiber and Salt Content. Food Qual. Prefer. 2019, 76, 91–99. [Google Scholar] [CrossRef]
- Torre, M.; Rodriguez, A.R.; Saura-Calixto, F. Effects of Dietary Fiber and Phytic Acid on Mineral Availability. Crit. Rev. Food Sci. Nutr. 1991, 30, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Egli, I.; Zeder, C.; Walczyk, T.; Hurrell, R. Polyphenols and Phytic Acid Contribute to the Low Iron Bioavailability from Common Beans in Young Women. J. Nutr. 2010, 140, 1977–1982. [Google Scholar] [CrossRef] [PubMed]
- Klepacka, J.; Najda, A.; Klimek, K. Effect of Buckwheat Groats Processing on the Content and Bioaccessibility of Selected Minerals. Foods 2020, 9, 832. [Google Scholar] [CrossRef]
- Pongrac, P.; Potisek, M.; Fraś, A.; Likar, M.; Budic, B.; Myszka, K.; Boros, D.; Necemer, M.; Kelemen, M.; Vavpetič, P.; et al. Composition of Mineral Elements and Bioactive Compounds in Tartary Buckwheat and Wheat Sprouts as Affected by Natural Mineral-Rich Water. J. Cereal Sci. 2016, 69, 10. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Li, S.; Bundschuh, J. A Review of the Distribution, Sources, Genesis, and Environmental Concerns of Salinity in Groundwater. Environ. Sci. Pollut. Res. 2020, 27, 41157–41174. [Google Scholar] [CrossRef]
- Rousseau, S.; Kyomugasho, C.; Celus, M.; Hendrickx, M.; Grauwet, T. Barriers Impairing Mineral Bioaccessibility and Bioavailability in Plant-Based Foods and the Perspectives for Food Processing. Crit. Rev. Food Sci. Nutr. 2019, 60, 826–843. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.B.; Aschner, M. Manganese Metabolism in Humans. Front. Biosci. (Landmark Ed) 2018, 23, 1655–1679. [Google Scholar] [CrossRef]
- Harischandra, D.; Ghaisas, S.; Zenitsky, G.; Jin, H.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front. Neurosci. 2019, 13, 654. [Google Scholar] [CrossRef]
- Mesta-Corral, M.; Gómez-García, R.; Balagurusamy, N.; Torres-León, C.; Hernández-Almanza, A.Y. Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges. Foods 2024, 13, 2062. [Google Scholar] [CrossRef]
- Kaim, U.; Goluch, Z.S. Health Benefits of Bread Fortification: A Systematic Review of Clinical Trials According to the PRISMA Statement. Nutrients 2023, 15, 4459. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, S.S.; Harnack, L.; Liu, R.H.; McKeown, N.; Seal, C.; Liu, S.; Fahey, G.C. Putting the Whole Grain Puzzle Together: Health Benefits Associated with Whole Grains—Summary of American Society for Nutrition 2010 Satellite Symposium. J. Nutr. 2011, 141, 1011S–1022S. [Google Scholar] [CrossRef] [PubMed]
- Sajdakowska, M.; Gębski, J.; Żakowska-Biemans, S.; Jeżewska-Zychowicz, M. Willingness to Eat Bread with Health Benefits: Habits, Taste and Health in Bread Choice. Public Health 2019, 167, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R., Jr.; Meyer, K.A.; Kushi, L.H.; Folsom, A.R. Whole-Grain Intake May Reduce the Risk of Ischemic Heart Disease Death in Postmenopausal Women: The Iowa Women’s Health Study. Am. J. Clin. Nutr. 1998, 68, 248–257. [Google Scholar] [CrossRef]
- Slavin, J. Whole Grains and Human Health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef]
- Zhou, K.; Su, L.; Yu, L. Phytochemicals and Antioxidant Properties in Wheat Bran. J. Agric. Food Chem. 2004, 52, 6108–6114. [Google Scholar] [CrossRef]
Type of Bread | Ingredients [g/1000 g] |
---|---|
TB 0 | Wheat bread flour (600), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
TB 1.5% | Wheat bread flour (585), buckwheat husk (15), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
TB 3.0% | Wheat bread flour (570), buckwheat husk (30), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
TB 4.5% | Wheat bread flour (555), buckwheat husk (45), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
WB 0 | Wheat bread flour (240), wholemeal wheat flour (460), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
WB 1.5% | Wheat bread flour (225), wholemeal wheat flour (460), buckwheat husk (15), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
WB 3.0% | Wheat bread flour (210), wholemeal wheat flour (460), buckwheat husk (30), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
WB 4.5% | Wheat bread flour (195), wholemeal wheat flour (460), buckwheat husk (45), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water |
Cu | Mn | Fe | Zn | Mg | Ca | Na | K | |
---|---|---|---|---|---|---|---|---|
Manganese | 0.9776 * | |||||||
Iron | 0.9853 | 0.9820 | ||||||
Zinc | 0.9125 | 0.8916 | 0.9004 | |||||
Magnesium | 0.9882 | 0.9935 | 0.9950 | 0.9003 | ||||
Calcium | −0.4986 | −0.4743 | −0.5184 | −0.3474 | −0.4658 | |||
Sodium | −0.8307 | −0.7640 | −0.8182 | −0.8729 | −0.8029 | 0.2774 | ||
Potassium | 0.9818 | 0.9853 | 0.9739 | 0.9093 | 0.9896 | −0.3605 | −0.8256 | |
Phosphorus | 0.9915 | 0.9840 | 0.9964 | 0.9026 | 0.9964 | −0.4925 | −0.8249 | 0.9829 |
Mineral Content 1, RDA 2/AI 3, and DDC 4 | T.B 0 Adults ≥ 19 | T.B 1.5% Adults ≥ 19 | T.B 3.0% Adults ≥ 19 | T.B 4.5% Adults ≥ 19 | W.B 0 Adults ≥ 19 | W.B 1.5% Adults ≥ 19 | W.B 3.0% Adults ≥ 19 | W.B 4.5% Adults ≥ 19 |
---|---|---|---|---|---|---|---|---|
Cu [mg/100 g] RDA DDC [%] | 0.12 ± 0.003 a 0.9 13.33 | 0.10 ± 0.004 b 0.9 11.11 | 0.12 ± 0.010 a 0.9 13.33 | 0.12 ± 0.001 a 0.9 13.33 | 0.20 ± 0.005 a 0.9 22.22 | 0.19 ± 0.005 b 0.9 21.11 | 0.19 ± 0.005 b 0.9 21.11 | 0.21 ± 0.002 a 0.9 23.33 |
Mn [mg/100 g] AI DDC [%] | 0.56 ± 0.024 c 1.8–2.3 24.35–31.11 | 0.62 ± 0.027 b 1.8–2.3 26.96–34.44 | 0.65 ± 0.039 b 1.8–2.3 28.26–36.11 | 0.79 ± 0.028 a 1.8–2.3 34.35–43.89 | 1.39 ± 0.022 c 1.8–2.3 60.43–77.22 | 1.44 ± 0.014 b 1.8–2.3 62.61–80.00 | 1.45 ± 0.013 b 1.8–2.3 63.04–80.56 | 1.55 ± 0.001 a 1.8–2.3 67.39–86.11 |
Fe [mg/100 g] RDA DDC [%] | 0.96 ± 0.041 b 10–18 5.33–9.6 | 0.97 ± 0.031 b 10–18 5.39–9.70 | 1.04 ± 0.004 a 10–18 5.78–10.40 | 0.97 ± 0.038 b 10–18 5.39–9.70 | 1.95 ± 0.055 a 10–18 10.83–19.50 | 1.89 ± 0.026 ab 10–18 10.50–18.90 | 1.85 ± 0.010 b 10–18 10.28–18.50 | 1.94 ± 0.024 a 10–18 10.75–19.40 |
Zn [mg/100 g] RDA DDC [%] | 0.96 ± 0.050 b 8–11 8.73–12 | 0.98 ± 0.024 b 8–11 8.91–12.25 | 1.10 ± 0.057 a 8–11 10.00–13.75 | 1.12 ± 0.041 a 8–11 10.18–14.00 | 2.48 ± 0.055 a 8–11 21.82–30.00 | 2.18 ± 0.060 c 8–11 13.27–18.25 | 2.27 ± 0.018 b 8–11 20.64–28.38 | 2.29 ± 0.036 b 8–11 20.82–28.63 |
Mg [mg/100 g] RDA DDC [%] | 20.9 ± 0.54 b 310–420 4.98–6.74 | 21.5 ± 0.86 b 310–420 5.02–6.94 | 23.9 ± 0.24 a 310–420 5.69–7.71 | 24.0 ± 0.54 a 310–420 5.71–7.75 | 40.8 ± 1.40 b 310–420 9.71–13.16 | 40.4 ± 0.19 b 310–420 9.62–12.97 | 39.5 ± 0.08 b 310–420 9.41–12.74 | 42.4 ± 0.04 a 310–420 10.10–13.68 |
Ca [mg/100 g] RDA DDC [%] | 67.6 ± 0.86 c 1000–1200 5.63–6.76 | 78.6 ± 2.21 b 1000–1200 5.59–7.86 | 87.7 ± 3.42 ab 1000–1200 7.31–8.77 | 83.4 ± 4.98 a 1000–1200 6.95–8.34 | 74.0 ± 3.70 a 1000–1200 6.17–7.40 | 67.1 ± 0.82 b 1000–1200 5.59–6.71 | 67.3 ± 5.08 b 1000–1200 5.61–6.73 | 75.9 ± 2.32 a 1000–1200 6.33–7.59 |
Na [mg/100 g] AI DDC [%] | 52.6 ± 2.49 bc 1200–1500 3.51–4.38 | 51.4 ± 1.34 c 1200–1500 3.43–4.28 | 54.4 ± 0.62 b 1200–1500 3.63–4.53 | 58.3 ± 0.47 a 1200–1500 3.89–4.86 | 21.9 ± 0.44 d 1200–1500 1.46–1.83 | 45.5 ± 0.36 a 1200–1500 3.03–3.79 | 44.1 ± 0.29 b 1200–1500 2.94–3.68 | 24.4 ± 0.06 c 1200–1500 1.63–2.03 |
K [mg/100 g] RDA DDC [%] | 175.3 ± 7.60 c 3500 5.01 | 179.1 ± 5.93 c 3500 5.12 | 193.1 ± 2.08 b 3500 5.52 | 197.2 ± 7.77 a 3500 5.64 | 253.0 ± 0.63 b 3500 7.23 | 245.5 ± 0.56 c 3500 7.01 | 242.8 ± 2.18 d 3500 6.94 | 266.6 ± 1.25 a 3500 7.62 |
P [mg/100 g] RDA DDC [%] | 122.4 ± 9.91 ab 700 17.49 | 117.9 ± 4.96 b 700 16.48 | 128.7 ± 2.76 a 700 18.38 | 129.7 ± 2.75 a 700 18.53 | 212.0 ± 4.85 a 700 30.29 | 203.6 ± 2.68 b 700 29.09 | 196.6 ± 0.49 c 700 28.09 | 209.6 ± 0.82 a 700 29.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumtaz, W.; Klepacka, J.; Czarnowska-Kujawska, M. Modification of Mineral Content in Bread with the Addition of Buckwheat Husk. Appl. Sci. 2025, 15, 4455. https://doi.org/10.3390/app15084455
Mumtaz W, Klepacka J, Czarnowska-Kujawska M. Modification of Mineral Content in Bread with the Addition of Buckwheat Husk. Applied Sciences. 2025; 15(8):4455. https://doi.org/10.3390/app15084455
Chicago/Turabian StyleMumtaz, Wajeeha, Joanna Klepacka, and Marta Czarnowska-Kujawska. 2025. "Modification of Mineral Content in Bread with the Addition of Buckwheat Husk" Applied Sciences 15, no. 8: 4455. https://doi.org/10.3390/app15084455
APA StyleMumtaz, W., Klepacka, J., & Czarnowska-Kujawska, M. (2025). Modification of Mineral Content in Bread with the Addition of Buckwheat Husk. Applied Sciences, 15(8), 4455. https://doi.org/10.3390/app15084455