DI-SLAM: A Real-Time Enhanced RGB-D SLAM for Dynamic Indoor Environments
Abstract
:1. Introduction
- (1)
- We propose a visual SLAM system designed for indoor dynamic environments, significantly improving pose estimation accuracy and demonstrating enhanced robustness in dynamic indoor scenes.
- (2)
- We develop a dynamic feature filtering approach leveraging Yolov5s detection and multi-view geometry. This method effectively addresses the issues of false positives and false negatives in dynamic feature recognition through a dual-validation mechanism.
- (3)
- We evaluated our algorithm’s performance on the TUM RGB-D dataset. The results show that DI-SLAM effectively filters moving features and improves localization accuracy in highly dynamic scenarios.
2. Related Works
2.1. Methods Based on Motion Segmentation
2.2. Methods Based on Semantic Information
2.3. Methods Based on Fusion
3. System Introduction
3.1. Framework of DI-SLAM
3.2. Dynamic Filtering Strategy
3.2.1. Dynamic Feature Point Detection
- Estimation of the Fundamental Matrix
- 2.
- Epipolar Constraint for Filtering Dynamic Features
3.2.2. Object Detection Thread
3.2.3. Multi-View Geometry Method
4. Experiments
4.1. Experiment Based on the Improved Yolov5s
4.2. Experimental Dataset
4.3. Positioning Accuracy Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLAM | Simultaneous Localization and Mapping |
ORB-SLAM3 | Oriented FAST and Rotated BRIEF-SLAM version 3 |
DI-SLAM | SLAM For Dynamic Indoor Environments |
TUM | Technical University of Munich |
RANSAC | Random Sample Consensus |
IMU | Inertial Measurement Unit |
CBAM | Convolutional Block Attention Module |
SPPF | Spatial Pyramid Pooling Feature |
RDS-SLAM | RDS-SLAM: Real-Time Dynamic SLAM |
References
- Engel, J.; Schps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Smith, R. On the representation of spatial uncertainty. Int. J. Robot. Res. 1986, 5, 56–68. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Z.X.; Liu, X.J.; Xie, F.G.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In Proceedings of the 25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1168–1174. [Google Scholar]
- Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom. Lett. 2018, 3, 4076–4083. [Google Scholar] [CrossRef]
- Pan, Z.H.; Hou, J.Y.; Yu, L. Optimization RGB-D 3-D Reconstruction Algorithm Based on Dynamic SLAM. IEEE Trans. Instrum. Meas. 2023, 72, 13. [Google Scholar] [CrossRef]
- Fan, Y.C.; Zhang, Q.C.; Tang, Y.L.; Liu, S.F.; Han, H. Blitz-SLAM: A semantic SLAM in dynamic environments. Pattern Recognit. 2022, 121, 14. [Google Scholar] [CrossRef]
- Bescos, B.; Campos, C.; Tardós, J.D.; Neira, J. DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM. IEEE Robot. Autom. Lett. 2021, 6, 5191–5198. [Google Scholar] [CrossRef]
- Kochanov, D.; Osep, A.; Stückler, J.; Leibe, B. Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 1785–1792. [Google Scholar]
- Zhu, Y.; An, H.; Wang, H.D.; Xu, R.D.; Sun, Z.P.; Lu, K. DOT-SLAM: A Stereo Visual Simultaneous Localization and Mapping (SLAM) System with Dynamic Object Tracking Based on Graph Optimization. Sensors 2024, 24, 4676. [Google Scholar] [CrossRef] [PubMed]
- Henein, M.; Zhang, J.; Mahony, R.; Ila, V. Dynamic SLAM: The Need For Speed. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–15 June 2020; pp. 2123–2129. [Google Scholar]
- Qin, Y.; Yu, H.D. A review of visual SLAM with dynamic objects. Ind. Robot. 2023, 50, 1000–1010. [Google Scholar] [CrossRef]
- Long, R.; Rauch, C.; Zhang, T.W.; Ivan, V.; Vijayakumar, S. RigidFusion: Robot Localisation and Mapping in Environments With Large Dynamic Rigid Objects. IEEE Robot. Autom. Lett. 2021, 6, 3703–3710. [Google Scholar] [CrossRef]
- Bibby, C.; Reid, I.D. Simultaneous localisation and mapping in dynamic environments (SLAMIDE) with reversible data association. Proc. Robot. Sci. Syst. 2007, 66, 81. [Google Scholar]
- Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and Structure from Motion in Dynamic Environments: A Survey. ACM Comput. Surv. 2018, 51, 36. [Google Scholar] [CrossRef]
- Wang, Y.T.; Lin, M.C.; Ju, R.C. Visual SLAM and Moving-object Detection for a Small-size Humanoid Robot. Int. J. Adv. Robot. Syst. 2010, 7, 133–138. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Zhong, M.L.; Hong, C.Y.; Jia, Z.Q.; Wang, C.Y.; Wang, Z.G. DynaTM-SLAM: Fast filtering of dynamic feature points and object-based localization in dynamic indoor environments. Robot. Auton. Syst. 2024, 174, 10. [Google Scholar] [CrossRef]
- Fang, Y.H.; Xie, Z.J.; Chen, K.W.; Huang, G.Y.; Zarei, R.; Xie, Y.T. DYS-SLAM: A real-time RGBD SLAM combined with optical flow and semantic information in a dynamic environment. J. Intell. Fuzzy Syst. 2023, 45, 10349–10367. [Google Scholar] [CrossRef]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application toStereo Vision. In Proceedings of the 7th International Joint Conference on ArtificialIntelligence, Nagoya, Japan, 23–29 August 1997. [Google Scholar]
- Long, F.; Ding, L.; Li, J.F. DGFlow-SLAM: A Novel Dynamic Environment RGB-D SLAM without Prior Semantic Knowledge Based on Grid Segmentation of Scene Flow. Biomimetics 2022, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.C.; Zhang, Y.; Li, P.; Fang, Z.; Scherer, S. RGB-D SLAM in Dynamic Environments Using Point Correlations. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 373–389. [Google Scholar] [CrossRef]
- Lu, Q.; Pan, Y.; Hu, L.K.; He, J.S. A Method for Reconstructing Background from RGB-D SLAM in Indoor Dynamic Environments. Sensors 2023, 23, 3529. [Google Scholar] [CrossRef]
- Roussillon, C.; Gonzalez, A.; Solà, J.; Codol, J.M.; Mansard, N.; Lacroix, S.; Devy, M. RT-SLAM: A Generic and Real-Time Visual SLAM Implementation; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Huang, X.T.; Chen, X.B.; Zhang, N.; He, H.J.; Feng, S. ADM-SLAM: Accurate and Fast Dynamic Visual SLAM with Adaptive Feature Point Extraction, Deeplabv3pro, and Multi-View Geometry. Sensors 2024, 24, 3578. [Google Scholar] [CrossRef]
- Yang, H.W.; Jiang, P.L.; Wang, F. Multi-View-Based Pose Estimation and Its Applications on Intelligent Manufacturing. Sensors 2020, 20, 5072. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, Y.M.; Chen, P.Z.; Xie, Y.L.; Zheng, S.Q.; Hu, Z.Z.; Wang, S.T. TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments. Sensors 2023, 23, 9807. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.F.; Cai, Z.X. Mobile robot mapping system and method in dynamic environments. In Proceedings of the International Conference on Informational Technology and Environmental System Science, Henan Polytechn Univ, Jiaozuo, China, 15–17 May 2008; pp. 1024–1029. [Google Scholar]
- Chang, Y.M.; Hu, J.; Xu, S.Y. OTE-SLAM: An Object Tracking Enhanced Visual SLAM System for Dynamic Environments. Sensors 2023, 23, 7921. [Google Scholar] [CrossRef]
- Cong, P.C.; Li, J.X.; Liu, J.J.; Xiao, Y.X.; Zhang, X. SEG-SLAM: Dynamic Indoor RGB-D Visual SLAM Integrating Geometric and YOLOv5-Based Semantic Information. Sensors 2024, 24, 2102. [Google Scholar] [CrossRef]
- Kan, X.K.; Shi, G.F.; Yang, X.R.; Hu, X.W. YPR-SLAM: A SLAM System Combining Object Detection and Geometric Constraints for Dynamic Scenes. Sensors 2024, 24, 6576. [Google Scholar] [CrossRef]
- Bai, D.D.; Wang, C.Q.; Zhang, B.; Yi, X.D.; Tang, Y.H. Matching-Range-Constrained Real-Time Loop Closure Detection with CNNs Features. In Proceedings of the IEEE International Conference on Real-Time Computing and Robotics (IEEE RCAR), Angkor Wat, Cambodia, 6–10 June 2016; pp. 70–75. [Google Scholar]
- Hu, X.; Lang, J.C. DOE-SLAM: Dynamic Object Enhanced Visual SLAM. Sensors 2021, 21, 3091. [Google Scholar] [CrossRef]
- Tian, L.Y.; Yan, Y.B.; Li, H.R. SVD-SLAM: Stereo Visual SLAM Algorithm Based on Dynamic Feature Filtering for Autonomous Driving. Electronics 2023, 12, 1883. [Google Scholar] [CrossRef]
- Yue, S.Z.; Wang, Z.J.; Zhang, X.N. DSOMF: A Dynamic Environment Simultaneous Localization and Mapping Technique Based on Machine Learning. Sensors 2024, 24, 3063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Henein, M.; Mahony, R.; Ila, V. Robust Ego and Object 6-DoF Motion Estimation and Tracking. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 5017–5023. [Google Scholar]
- He, L.; Li, S.Y.; Qiu, J.T.; Zhang, C.H.M. DIO-SLAM: A Dynamic RGB-D SLAM Method Combining Instance Segmentation and Optical Flow. Sensors 2024, 24, 5929. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Ding, Y.; Yuan, Y.T.; Zhang, Y.T.; Liu, J.P.; Li, J.X. DOC-SLAM: Robust Stereo SLAM with Dynamic Object Culling. In Proceedings of the 7th International Conference on Automation, Robotics and Applications (ICARA), Prague, Czech Republic, 4–6 February 2021; pp. 258–262. [Google Scholar]
- Li, C.; Hu, Y.; Liu, J.Q.; Jin, J.H.; Sun, J. ISFM-SLAM: Dynamic visual SLAM with instance segmentation and feature matching. Front. Neurorobot. 2024, 18, 15. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 573–580. [Google Scholar]
Model | MAP/% | Precision/% | Recall/% | Params/M | Each Frame/ms |
---|---|---|---|---|---|
Improved_Yolov5s | 69.8 | 74.7 | 67.3 | 6.5 | 10.7 |
Yolov5s | 65.6 | 65.9 | 65.4 | 7.4 | 12.3 |
Sequence | ORB-SLAM3 | Ours | Improvement (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | Mean | Std | RMSE | Mean | Std | RMSE | Mean | Std | |
s_static | 0.0095 | 0.0085 | 0.0043 | 0.0074 | 0.0065 | 0.0034 | 22.11 | 23.53 | 20.93 |
w_half | 0.2920 | 0.2418 | 0.1636 | 0.0329 | 0.0285 | 0.0165 | 88.73 | 88.21 | 89.91 |
w_xyz | 0.6502 | 0.5525 | 0.3429 | 0.0191 | 0.0166 | 0.0094 | 97.06 | 97.00 | 97.26 |
w_static | 0.2226 | 0.2046 | 0.0878 | 0.0077 | 0.0068 | 0.0036 | 96.54 | 96.68 | 95.90 |
Sequence | RDS-SLAM | Ours | ||||||
---|---|---|---|---|---|---|---|---|
RMSE | Max | Mean | Std | RMSE | Max | Mean | Std | |
s_static | 0.0070 | 0.0272 | 0.0062 | 0.0032 | 0.0074 | 0.0280 | 0.0065 | 0.0035 |
w_half | 0.0317 | 0.1626 | 0.0273 | 0.0161 | 0.0329 | 0.0927 | 0.0285 | 0.0165 |
w_xyz | 0.0092 | 0.0231 | 0.0085 | 0.0037 | 0.0077 | 0.0237 | 0.0068 | 0.0036 |
w_static | 0.0163 | 0.0637 | 0.0142 | 0.0079 | 0.0191 | 0.0499 | 0.0166 | 0.0094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Xia, C.; Han, J. DI-SLAM: A Real-Time Enhanced RGB-D SLAM for Dynamic Indoor Environments. Appl. Sci. 2025, 15, 4446. https://doi.org/10.3390/app15084446
Wei W, Xia C, Han J. DI-SLAM: A Real-Time Enhanced RGB-D SLAM for Dynamic Indoor Environments. Applied Sciences. 2025; 15(8):4446. https://doi.org/10.3390/app15084446
Chicago/Turabian StyleWei, Wang, Changgao Xia, and Jiangyi Han. 2025. "DI-SLAM: A Real-Time Enhanced RGB-D SLAM for Dynamic Indoor Environments" Applied Sciences 15, no. 8: 4446. https://doi.org/10.3390/app15084446
APA StyleWei, W., Xia, C., & Han, J. (2025). DI-SLAM: A Real-Time Enhanced RGB-D SLAM for Dynamic Indoor Environments. Applied Sciences, 15(8), 4446. https://doi.org/10.3390/app15084446