Contribution of Atmospheric Fallout to the Soil–Root–Leaf Transfer of PAHs in Higher Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Treatment of Test Plants
2.3. Analysis of PAHs
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Soil-to-Aerial Parts Pathway
4.2. Atmosphere-to-Aerial Parts Pathway
4.3. Comparative Assessment
4.4. Contribution of Wet Deposition to PAH Transfer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lhotka, R.; Pokorná, P.; Zíková, N. Long-term trends in PAH concentrations and sources at rural background site in Central Europe. Atmosphere 2019, 10, 687. [Google Scholar] [CrossRef]
- Fachinger, F.; Drewnick, F.; Borrmann, S. How villages contribute to their local air quality—The influence of traffic-and biomass combustion-related emissions assessed by mobile mappings of PM and its components. Atmos. Environ. 2021, 263, 118648. [Google Scholar] [CrossRef]
- Tao, S.; Cui, Y.H.; Xu, F.L.; Li, B.G.; Cao, J.; Liu, W.X.; Schmitt, G.; Wang, X.J.; Shen, W.R.; Qing, B.P.; et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci. Total Environ. 2004, 320, 11–24. [Google Scholar] [CrossRef]
- Kulhánek, A.; Trapp, S.; Sismilich, M.; Janků, J.; Zimová, M. Crop-specific human exposure assessment for polycyclic aromatic hydrocarbons in Czech soils. Sci. Total Environ. 2005, 339, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Z.; Yang, Y.; Li, T.; Liu, M. Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere 2012, 89, 221–227. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Xu, Y.; Rodgers, T.F.; Ablimit, M.; Li, J.; Tan, F. Identifying the contributions of root and foliage gaseous/particle uptakes to indoor plants for phthalates, OPFRs and PAHs. Sci. Total Environ. 2023, 883, 163644. [Google Scholar] [CrossRef] [PubMed]
- Sehili, A.M.; Lammel, G. Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia. Atmos. Environ. 2007, 41, 8301–8315. [Google Scholar] [CrossRef]
- Yang, L.; Jin, M.; Tong, C.; Xie, S. Study of dynamic sorption and desorption of polycyclic aromatic hydrocarbons in silty-clay soil. J. Hazard. Mater. 2013, 244, 77–85. [Google Scholar] [CrossRef]
- Nadal, M.; Schuhmacher, M.; Domingo, J.L. Levels of PAHs in soil and vegetation samples from Tarragona County Spain. Environ. Pollut. 2004, 132, 1–11. [Google Scholar] [CrossRef]
- Al-Nasir, F.; Hijazin, T.J.; Al-Alawi, M.M.; Jiries, A.; Al-Madanat, O.Y.; Mayyas, A.; Al-Dalain, S.A.; Al-Dmour, R.; Alahmad, A.; Batarseh, M.I. Accumulation, source identification, and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in different Jordanian vegetables. Toxics 2022, 10, 643. [Google Scholar] [CrossRef]
- Biache, C.; Mansuy-Huaulta, L.; Faure, P. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. J. Hazard. Mater. 2014, 267, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Clément, N.; Muresan, B.; Hedde, M.; François, D. PAH dynamics in roadside environments: Influence on the consistency of diagnostic ratio values and ecosystem contamination assessments. Sci. Total Environ. 2015, 538, 997–1009. [Google Scholar] [CrossRef]
- Liao, X.; Ma, D.; Yan, X.; Yang, L. Distribution pattern of polycyclic aromatic hydrocarbons in particle-size fractions of coking plant soils from different depth. Environ. Geochem. Health 2012, 35, 271–282. [Google Scholar] [CrossRef]
- Gateuille, D.; Evrard, O.; Lefevre, I.; Moreau-Guigon, E.; Alliot, F.; Chevreuil, M.; Mouchel, J.M. Combining measurements and modelling to quantify the contribution of atmospheric fallout, local industry and road traffic to PAH stocks in contrasting catchments. Environ. Pollut. 2013, 189, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A.; Terelak, H. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 2008, 73, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Škrbić, B.D.; Antić, I.; Živančev, J.; Vágvölgyi, C. Comprehensive characterization of PAHs profile in Serbian soils for conventional and organic production: Potential sources and risk assessment. Environ. Geochem. Health 2021, 43, 4201–4218. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 1996, 11, 121–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Xiong, G.; Duan, Y.; Cai, C.; Wang, X.; Li, J.; Tao, S.; Liu, W. Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of Northern China. Environ. Pollut. 2018, 239, 13–20. [Google Scholar] [CrossRef]
- Jia, J.; Bi, C.; Zhang, J.J.; Chen, Z. Atmospheric deposition and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) based on experimental and computational simulations. Atmos. Environ. 2019, 204, 135–141. [Google Scholar] [CrossRef]
- Watts, A.W.; Ballestero, T.P.; Gardner, K.H. Soil and atmospheric inputs to PAH concentrations in salt marsh plants. Water Air Soil Pollut. 2008, 189, 253–263. [Google Scholar] [CrossRef]
- Tian, K.; Bao, H.Y.; Liu, X.P.; Wu, F.Y. Accumulation and distribution of PAHs in winter wheat from areas influenced by coal combustion in China. Environ. Sci. Pollut. Res. 2018, 25, 23780–23790. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Bao, H.; Li, J.; Li, J.; Xing, W.; Hong, H.; Wu, F. Dynamic distribution and accumulation of PAHs in winter wheat during whole plant growth: Field investigation. Ecotoxicol. Environ. Saf. 2020, 202, 110886. [Google Scholar] [CrossRef]
- Xiong, G.N.; Zhang, Y.H.; Duan, Y.H.; Cai, C.Y.; Wang, X.; Li, J.Y.; Tao, S.; Liu, W. Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core. Environ. Sci. Pollut. Res. 2017, 24, 18953–18965. [Google Scholar] [CrossRef]
- Birgül, A.; Tasdemir, Y.; Cindoruk, S.S. Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmos. Res. 2011, 101, 341–353. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, M.; Li, Y.; Liu, Y.; Li, S.; Ge, R. Dry and wet deposition of polycyclic aromatic hydrocarbons and comparison with typical media in urban system of Shanghai, China. Atmos. Environ. 2016, 144, 175–181. [Google Scholar] [CrossRef]
- Škrdlíková, L.; Landlová, L.; Klánová, J.; Lammel, G. Wet deposition and scavenging efficiency of gaseous and particulate phase polycyclic aromatic compounds at a central European suburban site. Atmos. Environ. 2011, 45, 4305–4312. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, H.; Zhang, Y.; Xiong, G.; Zhang, Q.; Li, Y.; Tao, S.; Liu, W. Evaluation of PAHs in edible parts of vegetables and their human health risks in Jinzhong City, Shanxi Province, China: A multimedia modeling approach. Sci. Total Environ. 2021, 773, 145076. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 227: Terrestrial Plant Test: Vegetative Vigour Test. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2006. [Google Scholar] [CrossRef]
- Boutin, C.; Aya, K.L.; Carpenter, D.; Thomas, P.J.; Rowland, O. Phytotoxicity testing for herbicide regulation: Shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Sci. Total Environ. 2012, 41, 79–92. [Google Scholar] [CrossRef]
- Kováts, N.; Horváth, E.; Eck-Varanka, B.; Csajbók, E.; Hoffer, A. Adapting the Vegetative Vigour Terrestrial Plant Test for assessing ecotoxicity of aerosol samples. Environ. Sci. Pollut. Res. 2017, 24, 15291–15298. [Google Scholar] [CrossRef]
- Teke, G.; Hubai, K.; Diósi, D.; Kováts, N. Assessment of Foliar Uptake and Accumulation of Airborne Polyaromatic Hydrocarbons Under Laboratory Conditions. Bull. Environ. Contam. Toxicol. 2020, 104, 444–448. [Google Scholar] [CrossRef]
- Jia, J.; Bi, C.; Zhang, J.; Jin, X.; Chen, Z. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk. Environ. Pollut. 2018, 241, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, F.; Zhang, J.; Zhou, M.; Li, F.; Liu, X. Accumulation characteristics and potential risk of PAHs in vegetable system grow in home garden under straw burning condition in Jilin, Northeast China. Ecotoxicol. Environ. Saf. 2018, 162, 647–654. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, S.; Du, X.; Yang, J.; Wang, W.; Hou, H. Accumulation, Allocation, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Brassica chinensis System. PLoS ONE 2015, 10, e0115863. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, M.L.; Rametta, G.; Manzo, S.; Salluzzo, A.; Rimauro, J.; Di Francia, G. Methodological issues about techniques for the spiking of standard OECD soil with nanoparticles: Evidence of different behaviours. J. Nanopart. Res. 2015, 17, 312. [Google Scholar] [CrossRef]
- MSZ 1484-6:2003; Testing of Waters. Part 6: Determination of Polycyclic Aromatic Hydrocarbons (PAH) Content by Gas Chromatographic-Mass Spectrometry. Hungarian Standard Association: Budapest, Hungary, 2003.
- MSZ EN 15527:2009; Characterization of Waste. Determination of Polycyclic Aromatic Hydrocarbons (PAH) in Waste Using Gas Chromatography Mass Spectrometry (GC/MS). Hungarian Standard Association: Budapest, Hungary, 2009.
- SO/IEC 17025:2018; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2018.
- Keith, L.H. The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycycl. Aromat. Compd. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
- Dat, N.D.; Chang, M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef]
- Ollivon, D.; Blanchoud, H.; Motelay-Massei, A.; Garban, B. Atmospheric deposition of PAHs to an urban site, Paris, France. Atmos. Environ. 2002, 36, 2891–2900. [Google Scholar] [CrossRef]
- Nikolaeva, O.; Rozanova, M.; Karpukhin, M. Distribution of traffic-related contaminants in urban topsoils across a highway in Moscow. J. Soils Sediments 2017, 17, 1045–1053. [Google Scholar] [CrossRef]
- De Souza, C.V.; Corrêa, S.M. Polycyclic aromatic hydrocarbons in diesel emission, diesel fuel and lubricant oil. Fuel 2016, 185, 925–931. [Google Scholar] [CrossRef]
- Qi, A.; Wang, P.; Lv, J.; Zhao, T.; Huang, Q.; Wang, Y.; Zhang, X.; Wang, M.; Xiao, Y.; Yang, L.; et al. Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport. Ecotoxicol. Environ. Saf. 2023, 265, 115494. [Google Scholar] [CrossRef]
- Wang, X.S. Polycyclic aromatic hydrocarbons (PAHs) in particle-size fractions of urban topsoils. Environ. Earth Sci. 2013, 70, 2855–2864. [Google Scholar] [CrossRef]
- Kang, F.; Chen, D.; Gao, Y.; Zhang, Y. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biol. 2010, 10, 210. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Semenkov, I.; Klink, G.; Tarigholizadeh, S.; Sushkova, S. Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environ. Geochem. Health 2021, 43, 1629–1654. [Google Scholar] [CrossRef] [PubMed]
- Alves, W.S.; Manoel, E.A.; Santos, N.S.; Nunes, R.O.; Domiciano, G.C.; Soares, M.R. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy. Micron 2017, 95, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Huelster, A.; Mueller, J.F.; Marschner, H. Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ. Sci. Technol. 1994, 28, 1110–1115. [Google Scholar] [CrossRef]
- Wild, E.; Dent, J.; Thomas, G.O.; Jones, K.C. Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: Further studies utilizing two-photon excitation microscopy. Environ. Sci. Technol. 2006, 40, 907–916. [Google Scholar] [CrossRef]
- Wieczorek, J.K.; Wieczorek, Z.J. Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants. Ecotoxicol. Environ. Saf. 2007, 66, 369–377. [Google Scholar] [CrossRef]
- Jia, J.; Bi, C.; Jin, X.; Zeng, Y.; Deng, L.; Wang, X.; Chen, Z. Uptake, translocation, and risk assessment of PAHs in contaminated soil-air-vegetable systems based on a field simulation experiment. Environ. Pollut. 2021, 271, 116361. [Google Scholar] [CrossRef]
- Sushkova, S.; Minkina, T.; Tarigholizadeh, S.; Antonenko, E.; Konstantinova, E.; Gülser, C.; Dudnikova, T.; Barbashev, A.; Kızılkaya, R. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian J. Soil Sci. 2020, 9, 242–253. [Google Scholar] [CrossRef]
- Inam, E.; Ibanga, F.; Essien, J. Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria. Environ. Monit. Assess. 2016, 188, 681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, G.; Liao, X. Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 213, 112075. [Google Scholar] [CrossRef]
- Cao, C.; Wu, Y.Y.; Lv, Z.Y.; Wang, J.W.; Wang, C.W.; Zhang, H.; Wang, J.J.; Chen, H. Uptake of polycyclic aromatic hydrocarbons (PAHs) from PAH–contaminated soils to carrots and Chinese cabbages under the greenhouse and field conditions. Chemosphere 2024, 360, 142405. [Google Scholar] [CrossRef]
- Jiao, S.; Hou, X.; Zhao, G.; Feng, Y.; Zhang, S.; Zhang, H.; Liu, J.; Jiang, G. Migration of polycyclic aromatic hydrocarbons in the rhizosphere micro-interface of soil-ryegrass (Lolium perenne L.) system. Sci. Total Environ. 2023, 903, 166299. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, H.; Lu, Y.; Yu, X.; Wang, J.; Sun, S.; Liu, M.; Li, D.; Li, Y.F.; Zhang, D. Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Sci. Rep. 2017, 7, 12165. [Google Scholar] [CrossRef] [PubMed]
- Paraíba, L.C.; Queiroz, S.C.N.; Maia, A.D.H.N.; Ferracini, V.L. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge. Sci. Total Environ. 2010, 408, 3270–3276. [Google Scholar] [CrossRef] [PubMed]
- Kipopoulou, A.; Manoli, E.; Samara, C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ. Pollut. 1999, 106, 369–380. [Google Scholar] [CrossRef]
- Bogolte, B.T.; Ehlers, G.A.C.; Braun, R.; Loibner, A.P. Estimation of PAH bioavailability to Lepidium sativum using sequential supercritical fluid extraction–a case study with industrial contaminated soils. Eur. J. Soil Biol. 2007, 43, 242–250. [Google Scholar] [CrossRef]
- Moeckel, C.; Nizzetto, L.; Strandberg, B.; Lindroth, A.; Jones, K.C. Air-boreal forest transfer and processing of polychlorinated biphenyls. Environ. Sci. Technol. 2009, 43, 5282–5289. [Google Scholar] [CrossRef]
- Wei, B.; Liu, C.; Bao, J.; Wang, Y.; Hu, J.; Qi, M.; Jin, J.; Wei, Y. Uptake and distributions of polycyclic aromatic hydrocarbons in cultivated plants around an E-waste disposal site in Southern China. Environ. Sci. Pollut. Res. 2021, 28, 2696–2706. [Google Scholar] [CrossRef]
- Meudec, A.; Dussauze, J.; Deslandes, E.; Poupart, N. Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments. Chemosphere 2006, 65, 474–481. [Google Scholar] [CrossRef]
- Fismes, J.; Perrin-Ganier, C.; Empereur-Bissonnet, P.; Morel, J.L. Soil to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Environ. Qual. 2002, 31, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; He, M.; Shang, H.; Yu, H.; Wang, H.; Li, H.; Piao, J.; Quinto, M.; Li, D. Biomonitoring polycyclic aromatic hydrocarbons by Salix matsudana leaves: A comparison with the relevant air content and evaluation of environmental parameter effects. Atmos. Environ. 2018, 181, 47–53. [Google Scholar] [CrossRef]
- Yakovleva, E.V.; Beznosikov, V.A.; Kondratenok, B.M.; Gabov, D.N. Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant systems of the northern-taiga biocenoses. Eurasian Soil Sci. 2012, 45, 309–320. [Google Scholar] [CrossRef]
- Desalme, D.; Binet, P.; Epron, D.; Bernard, N.; Gilbert, D.; Toussaint, M.-L.; Plain, C.; Chiapusio, G. Atmospheric phenanthrene pollution modulates carbon allocation in red clover (Trifolium pratense L.). Environ. Pollut. 2011, 159, 2759–2765. [Google Scholar] [CrossRef]
- Desalme, D.; Binet, P.; Bernard, N.; Gilbert, D.; Toussaint, M.L.; Chiapusio, G. Atmospheric phenanthrene transfer and effects on two grassland species and their root symbionts: A microcosm study. Environ. Exp. Bot. 2011, 71, 146–151. [Google Scholar] [CrossRef]
- Soceanu, A.; Dobrinas, S.; Stanciu, G.; Popescu, V. Polycyclic aromatic hydrocarbons in vegetables grown in urban and rural areas. Environ. Eng. Manag. J. 2014, 13, 2311–2315. [Google Scholar]
- Jánská, M.; Hajšlová, J.; Tomaniová, M.; Kocourek, V.; Vávrová, M. Polycyclic Aromatic Hydrocarbons in Fruits and Vegetables Grown in the Czech Republic. Bull. Environ. Contam. Toxicol. 2006, 77, 492–499. [Google Scholar] [CrossRef]
- Wennrich, L.; Popp, P.; Zeibig, M. Polycyclic aromatic hydrocarbon burden in fruit and vegetable species cultivated in allotments in an industrial area. Int. J. Environ. Anal. Chem. 2002, 82, 677–690. [Google Scholar] [CrossRef]
- Mo, C.H.; Cai, Q.Y.; Tang, S.R.; Zeng, Q.Y.; Wu, Q.T. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Arch. Environ. Contam. Toxicol. 2009, 56, 181–189. [Google Scholar] [CrossRef]
- Golomb, D.; Barry, E.; Fisher, G.; Varanusupakul, P.; Koleda, M.; Rooney, T. Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters. Atmos. Environ. 2001, 35, 6245–6258. [Google Scholar] [CrossRef]
- Pekey, B.; Karakaş, D.; Ayberk, S. Atmospheric deposition of polycyclic aromatic hydrocarbons to Izmit Bay, Turkey. Chemosphere 2007, 67, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Liang, B.; Chen, L.; Zhu, Y.; Gao, M.; Chen, J.; Wang, F.; Chen, Y.; Tian, M. Atmospheric wet and dry depositions of polycyclic aromatic compounds in a megacity of Southwest China. Environ. Res. 2022, 204, 112151. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Lee, C.B. Development of an improved dry and wet deposition collector and the atmospheric deposition of PAHs onto Ulsan Bay, Korea. Atmos. Environ. 2004, 38, 863–871. [Google Scholar] [CrossRef]
PAHs | Extract | S-Soil | S-Root | S-Stem | S-Leaf | A-Root | A-Stem | A-Leaf | |
---|---|---|---|---|---|---|---|---|---|
2 rings | Naphthalene | 0.491 | 32.6 | 78.5 | 50.2 | 30.4 | 32 | 208 | 234 |
2-Methyl-naphthalene | 0.394 | 4.2 | 5.1 | 4.2 | 3.9 | 4.4 | 7.7 | 8.6 | |
1-Methyl-naphthalene | 0.367 | 2.1 | 2.5 | 2.3 | 2.2 | 4.1 | 4.4 | 5.5 | |
3 rings | Acenaphthylene | 0.12 | 1.4 | 1.9 | 1.6 | 0.7 | 0.8 | 0.5 | 5.2 |
Acenaphthene | 0.052 | 1.7 | 2 | 1.9 | 1.5 | 1.87 | 2.4 | 2.4 | |
Fluorene | 0.472 | 1.1 | 4.1 | 4.1 | 2.9 | 3.3 | 4.8 | 5.2 | |
Phenanthrene | 0.448 | 5.4 | 7.8 | 7.5 | 4.9 | 2.9 | 6.4 | 8.6 | |
4 rings | Anthracene | 0.058 | 2.3 | 3.1 | 1.5 | 0.4 | 1.2 | 0.9 | 2 |
Fluoranthene | 0.074 | 1.62 | 6.2 | 5.7 | 5.1 | 5.7 | 9.3 | 10.1 | |
Pyrene | 0.081 | 9.2 | 3.5 | 2.9 | 2.9 | 1.8 | 5.1 | 9.1 | |
Benzanthracene | 0.032 | 4.7 | 4.7 | 2.6 | 2.5 | 1.7 | 5.6 | 8.1 | |
Chrysene | 0.013 | 8.3 | 2.4 | 1.6 | 1.1 | 0.4 | 2.5 | 12.7 | |
5 rings | Benzo[b]fluoranthene | 0.064 | 11.7 | 4.6 | 2.8 | 2.2 | 1.1 | 3.2 | 8.4 |
Benzo[k]fluoranthene | 0.036 | 4.9 | 4.7 | 0.8 | 0.7 | 0 | 2.3 | 2.2 | |
Benzo[e])pyrene | 0.055 | 5.6 | 2.7 | 1.6 | 1.1 | 0 | 1.8 | 4.3 | |
Benzo[a]pyrene | 0.043 | 3.6 | 3 | 1 | 0 | 0 | 1.1 | 1.4 | |
Dibenzo[a,h]anthracene | 0.045 | 4 | 1.9 | 0 | 0 | 0 | 1.5 | 2.3 | |
6 rings | Indeno [1,2,3-cd]pyrene | 0.033 | 1.2 | 1.5 | 0 | 0 | 0 | 0.5 | 1 |
Benzo[g,h,i]perylene | 0.035 | 2.1 | 2.8 | 0 | 0 | 0 | 1.3 | 2.1 | |
Total PAHs | 108 | 143 | 92.3 | 62.5 | 61.3 | 269 | 333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubai, K.; Eck-Varanka, B.; Tumurbaatar, S.; Teke, G.; Kováts, N. Contribution of Atmospheric Fallout to the Soil–Root–Leaf Transfer of PAHs in Higher Plants. Appl. Sci. 2025, 15, 4407. https://doi.org/10.3390/app15084407
Hubai K, Eck-Varanka B, Tumurbaatar S, Teke G, Kováts N. Contribution of Atmospheric Fallout to the Soil–Root–Leaf Transfer of PAHs in Higher Plants. Applied Sciences. 2025; 15(8):4407. https://doi.org/10.3390/app15084407
Chicago/Turabian StyleHubai, Katalin, Bettina Eck-Varanka, Selenge Tumurbaatar, Gábor Teke, and Nora Kováts. 2025. "Contribution of Atmospheric Fallout to the Soil–Root–Leaf Transfer of PAHs in Higher Plants" Applied Sciences 15, no. 8: 4407. https://doi.org/10.3390/app15084407
APA StyleHubai, K., Eck-Varanka, B., Tumurbaatar, S., Teke, G., & Kováts, N. (2025). Contribution of Atmospheric Fallout to the Soil–Root–Leaf Transfer of PAHs in Higher Plants. Applied Sciences, 15(8), 4407. https://doi.org/10.3390/app15084407